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Abstract

A stochastic, discrete time, single species metapopulation model with a finite
number of patches, each of which can be either occupied or empty, can be de-
scribed by a Markov chain with 2n states, where n denotes the number of patches
in the system. The analysis of such a Markov chain is computationally a very
hard, or even impossible task if n is not very small. This final degree project pro-
vides a possible means for making approximations of the asymptotic incidence of
occupancy and distribution of the number of occupied patches for systems where
n is large enough to describe systems commonly found in nature.
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Chapter 1

Introduction

Models of local population dynamics typically consider how individuals in a ho-
mogeneous population interact with each other, and predict the behavior of a
population’s size. A collection of local populations that are connected by mi-
gration is called a metapopulation. The individuals in a metapopulation do not
generally form one homogeneous population, since individuals may interact more
with individuals in the same local population than with those in other local pop-
ulations.

This paper deals with the stochastic model of metapopulations given in [5].
This model deals with metapopulations that have a finite number of local pop-
ulations that each occupy one patch. The number of individuals in each local
population is ignored; the model only considers if a patch is empty or occupied.
Local populations may go extinct, and an empty patch may become colonized
by colonizers from other occupied patches. Both these events are assumed to be
stochastic and to occur in discrete time.

Local population dynamics are supposed to act on a faster time scale than
the metapopulation dynamics, which leads to the assumption that the number of
individuals on a colonized patch can be determined from the patch characteristics.
The probability that a local population goes extinct often depends on the patch
size or any other measure of how many individuals of the species in question the
patch can carry. The probability of a patch becoming colonized at a specific time
typically depends on how many surrounding patches are occupied, how far away
these patches are and how many individuals they carry. It is not the purpose of
this paper to provide methods for calculating these probabilities.

In nature, habitat areas can be islands in an archipelago, or flowers on which
some species of insect live. Patchy environments also occur where large habitat
areas have been fragmented. The model considered can handle metapopulations
where local extinction and colonization probabilities are different for all patches.
This is necessary to successfully apply metapopulation models to real metapop-
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ulations in which most often local population sizes are all different, and patch
locations do not form any symmetric pattern.

In conservation biology, which is an area where metapopulation models are
very useful, questions that arise may be “What will happen to a specific metapop-
ulation if some patches are removed or disconnected from each other?”, or “Will
an existing metapopulation persist?”.

Some important properties of a metapopulation are the stationary probabil-
ities for the patches to be occupied (the incidence of occupancy), and the sta-
tionary probability distribution of the number of occupied patches. Similar prop-
erties are discussed in for example [4] and [1]. Expressions for these quantities
are derived in [5], but these expressions are mainly of theoretical interest, since
evaluation becomes practically impossible for metapopulations with a reasonable
number of patches. (However, some interesting properties can be calculated using
very small metapopulations.) It is the main purpose of this paper to provide a
means of estimating the incidence and the stationary distribution of the number
of occupied patches for metapopulations consisting of a quite large number of
patches.

A review of some results in [5] can be found in Chapter 2, which also intro-
duces some notation used throughout the paper. Chapter 2 also contains spectral
analysis of Markov chains, that could be used to calculate how often local extinc-
tion and recolonization events occur. Chapter 3 presents two different methods
for estimating the incidence of occupancy, of which one can also estimate the
probability distribution of the number of occupied patches. Chapter 4 describes
how to simulate the modelled metapopulation. Finally, Chapter 5 shows how the
results can be used in practice. The metapopulation of Melitaea cinxia described
in [7] is considered in this chapter.
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Chapter 2

Mathematical Representation

To mathematically represent a metapopulation consisting of n patches we use a
homogeneous Markov chain with state space

X =
{[

x1 x2 · · · xn

]
| xi ∈ {0, 1}

}
.

The state of the metapopulation at time t is represented by the random vector

η(t) =
[

η1(t) η2(t) · · · ηn(t)
]
∈ X,

where ηi(t) = 0 indicates that patch i is empty and ηi(t) = 1 that patch i is
occupied at time t. This makes a total of 2n states that the metapopulation can
assume.

An (n× n) interaction matrix Q = (qij) describes the local extinction proba-
bilities for all local populations and colonization rates for all pairs of patches in
the metapopulation. qij is the probability that colonizers originating from patch
i will not colonize patch j in one time step given that patch i is inhabited. The
local extinction probability of the local population at patch i is qii. The elements
in the matrix Q can be determined by any arbitrary biological model, that may
deal with patch sizes, locations and vegetation etc.

In this paper the following conditions are assumed to hold for the interaction
matrix Q.

1. q11 = 0 and qii > 0, i > 1.

2. qii < 1, i ∈ {1, 2, . . . , n}.

3. For each (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}, there exists an m ∈ N and
a chain of indices {ik}mk=0 , i = i0, j = im such that qik,ik+1

< 1, k ∈
{0, 1, . . . ,m− 1} .
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Condition 1 means that all patches except one have a positive extinction prob-
ability; one patch plays the role of a mainland and its local population cannot
go extinct. If all extinction probabilities are greater than zero, the metapopula-
tion will eventually become extinct, and the stationary probabilities π(x) = 0,
x ∈ X \ 0 and π(0) = 1. According to [5] however, a quasi-stationary behav-
ior of the metapopulation can be observed before it goes extinct. To calculate
the quasi-stationary probabilities it is possible to analyse a patch system that
contains a mainland. The system that has no mainland is considered to be a
perturbation of the mainland system and has quasi-stationary probabilities that
are equal to the stationary probabilities of the analysed system.

Condition 2 means that no patch has a local extinction probability of 1, and
finally, Condition 3 means that migrators from every patch can directly or indi-
rectly, through other patches colonize every other patch. These conditions are
equivalent to conditions A and B1 in [5].

We suppose that the mainland is initially inhabited which implies that η1(t) =
1 for all t ≥ 0. Thus it is possible to consider only those states of X where x1 = 1.
This subset D of X has 2n−1 elements.

Given any state x ∈ D, it is possible to reach all other states y in D. This is
easily seen by considering the possibility that emigrants from the mainland first
colonize all patches. After this all patches i for which yi = 0 go extinct, and
state y is reached. Thus the homogeneous Markov chain is also irreducible and
can be described by an irreducible probability matrix P . Now, since this matrix
has all row sums equal to 1, and the Perron-Frobenius eigenvalue lies between
the smallest and largest row sum [9], the Perron-Frobenius eigenvalue is 1. The
Perron-Frobenius theorem for irreducible matrices now implies that there is a
unique stationary probability distribution π, given by πP = π [9]. It also holds
that limk→∞ P k = 1π.

2.1 Stationary Probability Distribution

In this section we calculate the stationary probabilities for all states in D. From
this we also calculate the probability distribution of the number of occupied
patches, and the incidence of occupancy for each patch.

The probability that patch i is empty at time t + 1 given that the metapop-
ulation was in state x at time t is

qi(x) =
n∏

j=1

q
xj

ji . (2.1)

In this formula and throughout the paper the convention that 00 = 1 is used.
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The Markov chain transition probabilities P (x, y) that give the probabilities
that the chain will switch from any state x to state y in one time step are

P (x, y) =
n∏

i=1

qi(x)1−yi(1− qi(x))yi , x, y ∈ D. (2.2)

The k step transition probabilities P k(x, y) are defined by

P k(x, y) =


1, k = 0, x = y
0, k = 0, x 6= y∑

z∈D P (x, z) · P k−1(z, y), k ≥ 1
. (2.3)

P k(x, y) is the probability that state x leads to state y in k time steps.
The function P (x, y) defines a (2n−1 × 2n−1) Markov chain transition prob-

ability matrix P in a natural way by ordering the states with some function
φ : {1, 2, . . . , 2n−1} → D. It follows that P k(φ(i), φ(j)) = p

(k)
ij , where P k =

{
p

(k)
ij

}
denotes matrix powers.

We can now obtain the stationary probability distribution π(y), y ∈ D by
solving the following system of linear equations [5]:

π(y) =
∑
x∈D

π(x)P (x, y), y ∈ D,
∑
x∈D

π(x) = 1.

Alternatively, using matrix notation, we can obtain the vector π, πi = π(φ(i))
by solving the eigenvector problem

π = πP,
2n−1∑
i=1

πi = 1. (2.4)

Now let the function ρ(x) =
∑n

i=1 xi denote the number of occupied patches
when in state x. The distribution of the number of occupied patches {p(k)}nk=1 is
given by

p(k) =
∑

ρ(x)=k

π(x), (2.5)

or alternatively using matrix notation:

p(k) =
∑

ρ(φ(i))=k

πi. (2.6)

The incidence of occupancy Ji of the ith patch is

Ji =
∑

x∈D|xi=1

π(x), (2.7)

or in matrix notation
Ji =

∑
φ(j)i=1

πj. (2.8)

Appendix A contains an implementation in Matlab for performing these compu-
tations.
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2.2 Spectral Analysis

Let the function θ(η(t)) denote any arbitrary mapping from D to R. A formula
to calculate the spectral power density of the output θ(η(t)) from the Moore
machine described by the Markov chain η(t) is now derived.

We have
P (η(t + k) = φ(j) | η(t) = φ(i)) = P k

ij (2.9)

and also that
P (η(t) = φ(i)) = πi. (2.10)

The auto-correlation function is defined by

r(k) = E [θ(t) · θ(t + k)] . (2.11)

The auto-correlation function r(k) describes how the output signal at time t is
connected to the output at time t + k. With the help of (2.9), (2.10) and the
definition of expectation we have

r(k) =
2n−1∑
i=1

2n−1∑
j=1

πiθ(φ(i))θ(φ(j))P
|k|
ij = θΠP |k|θ

T
, (2.12)

where Π = diag(π) and θ =
[

θ(φ(1)) θ(φ(2)) · · · θ(φ(2n−1))
]
.

The spectral density function R(f), that describes the output signal’s power
distribution in frequency, is defined by

R(f) =
∞∑

k=−∞
r(k)e−j2πfk, (2.13)

and becomes, with r(k) as in (2.12):

R(f) =
∞∑

k=−∞
θΠP |k|θ

T
e−j2πfk. (2.14)

To remove the infinite series expression and transfer (2.14) to a closed form
expression we need the following properties.

Property 1 P · 1π = 1π, and P k · 1π = 1π, k ≥ 0.

Property 2 For all k ≥ 1 we have

P k − 1π = (P − 1π)k.
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Proof. The equality is proved by induction over k. For k = 1 the property
is trivially true. Now suppose that P k − 1π = (P − 1π)k is true for k = n. For
k = n + 1 we have

(P − 1π)n+1 = (P − 1π)n · (P − 1π) = (P n − 1π) · (P − 1π) = P n+1 − 1π,

where Property 1 is used.

Property 3 If µi are the eigenvalues of P , then for any polynomial function g,
g(µi) are the eigenvalues of g(P ). For a proof of this see [3], p. 84.

It is now possible to rewrite the spectral density function as follows.

R(f) =
∞∑

k=−∞
θΠ(P |k| − 1π)θ

T
e−j2πfk + θπT πθ

T
∞∑

k=−∞
e−j2πfk =

= 2 Re
∞∑

k=1

θΠ(P k − 1π)θ
T
e−j2πfk+

+(θΠθ
T − θπT πθ

T
) + E [θ(η(t))]2

∞∑
k=−∞

e−j2πfk =

= 2θΠ Re

[ ∞∑
k=1

(
(P − 1π)e−j2πf

)k
]
θ

T
+

+E
[
θ(η(t))2

]
− E [θ(η(t))]2 + E [θ(η(t))]2

∞∑
k=−∞

δ(f − k), (2.15)

where the last step utilizes Property 2. The eigenvalues {µi} of the probability
matrix P satisfy the condition |µi| ≤ 1, i ∈ {1, 2, . . . , 2n−1} (follows from the
Perron-Frobenius theorem, see [9]). Now define gk(x) = (x − xk)e−j2πf so that
(P − 1π)e−j2πf = limk→∞ gk(P ). The eigenvalues {λi} of (P − 1π)e−j2πf are,
according to Property 3, given by λi = limk→∞ gk(µi) = limk→∞(µi − µk

i )e
−j2πf ,

and |λi| =
∣∣∣limk→∞(µi − µk

i )
∣∣∣ < 1, i ∈ {1, 2, . . . , 2n−1} , so the matrix power

series in (2.15) converges (see [3], p. 112) and

R(f) = 2θΠ Re
[
(P − 1π)e−i2πf

(
I2n−1 − (P − 1π)e−i2πf

)−1
]
θ

T
+

+ Var [θ(η(t))] + E [θ(η(t))]2
∞∑

k=−∞
δ(f − k) =

= 2θΠ Re
[
(P − 1π)

(
ei2πfI2n−1 − (P − 1π)

)−1
]
θ

T
+
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+ Var [θ(η(t))] + E [θ(η(t))]2
∞∑

k=−∞
δ(f − k). (2.16)

Here δ denotes Dirac’s delta function defined by
∫∞
−∞ δ(x)φ(x)dx = φ(0) for any

test function φ.
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Chapter 3

Some Possible Reductions

The eigenvector problem (2.4) is computationally very tough even for quite mod-
erate values of n. To use the stochastic metapopulation model considered for
patch systems with reasonably many patches, we need to find alternative meth-
ods to calculate the incidence of occupancy Ji and the stationary distribution of
the number of occupied patches p(k). In this section two methods for approxi-
mating the incidence of occupancy are presented.

The first, that also approximates the distribution of the number of occupied
patches, can be used if some patches are equal in a specific sense; in this case they
can be lumped together. A Markov chain that keeps track of how many occupied
patches there are in each lump, the lumped Markov chain, has considerably less
states than the original one (where patches have not been lumped together). If
the original Markov chain does not have any patches that can be lumped exactly,
we could still obtain an approximation of Ji and p(k) by slightly changing the
colonization and extinction probabilities. The error introduced by such a change
in the matrix Q is analysed at the end of the chapter.

The other method gives, for each patch i, an interval that contains the inci-
dence of occupancy Ji. This is probably the better of the two methods to use in
many cases, but unfortunately it doesn’t give any information about the station-
ary distribution of the number of occupied patches. Since this method gives upper
and lower limits for the incidence, it could also be used to reduce the number of
states in the original Markov chain as follows. If some patches are inhabited with
a very low probability, we could consider the possibility that their influence on the
system is negligible, and analyse the system without them. Another possibility
is that some patches are inhabited with a very high probability; in this case it
is sometimes reasonable to assume that these patches are other mainlands. For
each patch that is removed, the number of states in the system is reduced by a
factor of two.
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3.1 Lumping of Patches

We partition the patches {1, 2, . . . , n} into g disjoint sets S1, S2, . . . , Sg where⋃g
i=1 Si = {1, 2, . . . , n} . Patches that should remain unlumped are put into sepa-

rate sets with only one member. The lumping method described in this section
requires the following conditions on the matrix Q, which also define the single
patch extinction probability, tk, and the inter-lump colonization probability, 1−rk,
for each lump k ∈ {1, 2, . . . , g} .

1. qii = qjj = tk, i, j ∈ Sk.

2. qij = rk, i 6= j and i, j ∈ Sk.

3. qli = qlj, l /∈ Sk and i, j ∈ Sk.

4. qil = qjl, l /∈ Sk and i, j ∈ Sk.

Condition 1 ensures that all local populations within a lump of patches have
the same local extinction probability tk. Condition 2 means that individuals from
all patches within a lump have the same probability, 1 − rk, to colonize other
patches within the lump. Condition 3 means that the probability for individuals
from each of the local populations within one lump to colonize all other patches
must be equal. Likewise, Condition 4 means that the probability for each of the
patches within a lump to be colonized by any other local population must be
equal.

The metapopulation can now be represented by a Markov chain with state
space

Y =
{[

y1 y2 · · · yg

]
| yi ∈ {0, 1, . . . , |Si|}

}
,

where |Si| denotes the number of elements inSi. The state ξ(t) at time t records
the number of occupied patches in each lump at that time. If each lump contains
exactly one patch, the lumping conditions above are obviously satisfied and Y =
X. If on the other hand some lumps contain more than one patch, we do not know
which of the patches in a lump are inhabited at a specific moment. However, all
other information about the metapopulation is preserved. It is straightforward to
calculate the stationary distribution of the number of occupied patches given the
stationary probabilities of the lumped Markov chain. The incidence of occupancy,
however, requires some new formulae.

We first derive the state transition probabilities P (x, y) for the lumped Markov
chain as follows. Let qi(x, n) denote the probability that lump i will have n
occupied patches at time t + 1, given that the Markov chain was in state x at

12



time t. The probability σk(x) that an inhabited patch j ∈ Sk will not become
extinct in one time step when in state x is

σk(x) = 1− tkr
xk−1
k

∏
i/∈Sk

qim, m ∈ Sk, (3.1)

and the probability νk(x) that a specific empty patch in Sk will be colonized
during the next time unit is

νk(x) = 1− rxk
k

∏
i/∈Sk

qim, m ∈ Sk. (3.2)

Given that the metapopulation was in state x at time t, the probability that at
time t + 1, lump Sk will have a patches that have not become extinct since time
t, and b patches that have been colonized since time t, can be determined with
the help of (3.1) and (3.2). The probability is

fk(x, a, b) =

(
xk

a

)
σk(x)a(1− σk(x))xk−a·

·
(
|Sk| − xk

b

)
νk(x)b(1− νk(x))|Sk|−xk−b =

=

(
xk

a

)1− tkr
xk−1
k

∏
i/∈Sk

qi,m

atkr
xk−1
k

∏
i/∈Sk

qi,m

xk−a

·

·
(
|Sk| − xk

b

)1− rxk
k

∏
i/∈Sk

qi,m

brxk
k

∏
i/∈Sk

qi,m

|Sk|−xk−b

,

where m ∈ Sk, a, b ≥0, a ≤ xk and a + b ≤ |Sk| . So we have that

qi(x, n) =
min{xi,n}∑

j=max{0,n+xi−|Sk|}
fi(x, j, n− j),

from which the Markov chain transition probabilities P (x, y) are

P (x, y) =
g∏

i=1

qi(x, yi). (3.3)

To derive expressions for the distribution of the number of occupied patches,
p(k), and the incidence of occupancy, we calculate the stationary probabilities
π(x) by solving the linear equation system

π(y) =
∑
x∈Y

π(x)P (x, y), y ∈ Y,
∑
x∈Y

π(x) = 1.
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The distribution of the number of occupied patches can now be evaluated
analogously to equation (2.5) as

p(k) =
∑∑g

j=1
xj=k

π(x).

The incidence of occupancy for the patches can be derived by observing that
the probability that lump i has k occupied patches is

pi(k) =
∑
xi=k

π(x).

The incidence for a patch in lump i is thus

Ji =
|Si|∑
k=1

k

|Si|
pi(k).

Appendix B.1 contains Matlab .m-files for performing the computations de-
scribed in this section. In some applications, we might have a metapopulation
model that can be lumped as above in an exact manner. For example, we might
have a model that considers five different patch sizes, where colonization prob-
abilities depend only on the area of the patches. Even with restrictions on the
matrix Q as above, one may construct metapopulation models that correspond
to reality much better than models that assume an infinite number of patches.

It is also possible that only approximate geographical data or very uncertain
local population dynamics models are available. Then some estimates of Q are
not better than others and Q can be chosen quite freely.

3.2 Upper and Lower Bounds for the Incidence

When we consider metapopulations consisting of a quite large number of local
populations, some local populations may have very small influence on some of the
other local populations. When calculating the incidence of occupancy for a patch
in such a metapopulation, we would like to exclude patches that do not effect the
incidence of occupancy that we are trying to calculate. It would be hazardous to
exclude patches from the calculation without knowing how the result is affected.
This section presents an approach to reducing the complexity of the system by
calculating the incidence of occupancy for the patches under certain conditions
that make the number of states smaller. The results obtained are upper and lower
bounds for the incidence of occupancy for all patches in the metapopulation. At
best these bounds give a narrow interval which is known to contain the incidence.
If the method does not work well, the difference between the upper and lower

14



bounds may be quite large. I have found the method to produce quite good
results in some realistic situations; see Section 5.2 for an example of this.

The method is based on the following observation. If we apply the condition
that some patch or patches in a metapopulation are always empty, the incidence
of occupancy cannot increase for any of the other patches. On the contrary, if we
apply the condition that some patches are always occupied the incidence of the
other patches will not decrease. A corollary to the following theorem proves this
statement. First we introduce some notation used throughout this section.

We will use the (n × n) interaction matrices Q = (qij) and Q̃ = (q̃ij) to
describe two metapopulations for which qij ≥ q̃ij, i, j ∈ {1, 2, . . . , n} . We write
qi(x) and q̃i(x) for the probabilities that patch i is empty one time step after the
respective systems are in state x. Analogously we write P (x, y) and P̃ (x, y) for
the corresponding state transition probabilities, and Ji, J̃i for the incidences of
occupancy.

Let ei denote the vector
[

e1 · · · en

]
, for which ei = 1 and ej = 0, j 6= i.

For any states x and y we write x ≥ y if ∀i : xi ≥ yi, and similarly x > y if
x ≥ y ∧ x 6= y.

We will now prove that the incidence is a monotonically increasing function
of the elements in Q.

Lemma 1 If x ≥ y ⇒ f(x) ≥ f(y) and q̃i ≤ qi for i ∈ {1, 2, . . . , n} , then

∑
y∈D

f(y)

(
n∏

i=1

q̃1−yi
i (1− q̃i)

yi −
n∏

i=1

q1−yi
i (1− qi)

yi

)
≥ 0.

Proof. First define kqi by

kqi =

{
q̃i, i ≤ k
qi, i > k

.

Two special cases are nqi = q̃i and 0qi = qi. We now prove that

Σk =
∑
y∈D

f(y)

(
n∏

i=1

kq
1−yi
i (1− kqi)

yi −
n∏

i=1

q1−yi
i (1− qi)

yi

)
≥ 0

for k ∈ {0, 1, . . . , n}. We have that Σ0 = 0, and prove that Σp ≥ Σp−1, p ≤ n, so
that we have Σk ≥ 0 for all k.

Σp − Σp−1 =

=
∑
y∈D

f(y)

(
n∏

i=1

pq
1−yi
i (1− pqi)

yi −
n∏

i=1

p−1q
1−yi
i (1− p−1qi)

yi

)
=

15



=
∑

y∈D|yp=0

f(y)

q̃p

∏
i6=p

pq
1−yi
i (1− pqi)

yi − qp

∏
i6=p

pq
1−yi
i (1− pqi)

yi

+

+f(y + ep)

(1− q̃p)
∏
i6=p

pq
1−yi
i (1− pqi)

yi − (1− qp)
∏
i6=p

pq
1−yi
i (1− pqi)

yi

 =

=
∑

y∈D|yp=0

(f(y)(q̃p − qp) + f(y + ep)(qp − q̃p))
∏
i6=p

pq
1−yi
i (1− pqi)

yi ≥

≥
∑

y∈D|yp=0

f(y) (q̃p − qp + qp − q̃p)
∏
i6=p

pq
1−yi
i (1− pqi)

yi

 = 0.

The inequality uses that f(y + ep) ≥ f(y) and that qp ≥ q̃p. This completes the
proof. 2

Theorem 1 Suppose Q = (qij) and Q̃ = (q̃ij) are the (n×n) interaction matrices
for two metapopulations such that qij ≥ q̃ij, i, j ∈ {1, 2, . . . , n} . Then∑

y≥el

(
P̃ k(x, y)− P k(x, y)

)
≥ 0

for all k, l and x.

Proof. To prove this statement, we first prove that

x ≥ y ⇒
∑
z≥el

(
P k(x, z)− P k(y, z)

)
≥ 0. (3.4)

This is done by induction over k. When k = 0, the inequality is true by the
definition of the state transition probabilities (equation (2.3)). Now suppose that
it holds for k = p. We prove that it also holds for k = p + 1. For x ≥ y,∑

z≥el

(
P p+1(x, z)− P p+1(y, z)

)
=

=
∑
z≥el

(∑
s∈D

P (x, s)P p(s, z)−
∑
s∈D

P (y, s)P p(s, z)

)
=

=
∑
s∈D

(P (x, s)− P (y, s))
∑
z≥el

P p(s, z)

 ≥ 0,

where the inequality is given by putting qi = qi(y), q̃i = qi(x) and f(s) =∑
z≥el

P p(s, z). Since x ≥ y we have qi(x) = qi(y) · ∏xj>yj
qij ≤ qi(y). We also

have x ≥ y ⇒ f(x) ≥ f(y) by the induction hypothesis. Lemma 1 then proves
the inequality.
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Now the theorem itself is proved by induction over k. For the case k = 0, it
is true by the definition of the state transition probabilities. Suppose it holds for
k = p. We will prove that it holds also for k = p + 1.∑

y≥el

(
P̃ p+1(x, y)− P p+1(x, y)

)
=

=
∑
y≥el

(∑
s∈D

P̃ (x, s)P̃ p(s, y)−
∑
s∈D

P (x, s)P p(s, y)

)
=

=
∑
s∈D

P̃ (x, s)
∑
y≥el

P̃ p(s, y)− P (x, s)
∑
y≥el

P p(s, y)

 ≥
≥
∑
s∈D

(P̃ (x, s)− P (x, s)
) ∑

y≥el

P p(s, y)

 ≥ 0,

where the first inequality is given by the induction hypothesis. The second in-
equality is given by using Lemma 1 again, this time with qi = qi(x), q̃i = q̃i(x)
and f(s) =

∑
y≥el

P p(s, y), which makes q̃i ≤ qi and x ≥ y ⇒ f(x) ≥ f(y) by the
inequality (3.4). This completes the proof. 2

Corollary 1 We have that J̃i ≥ Ji, i ∈ {1, 2, . . . , n} , where Ji and J̃i denote
the incidences of occupancy for patches in the metapopulations described by the
interaction matrices Q and Q̃, respectively.

Proof. From equation (2.7) we have

J̃i − Ji =
∑

x∈D|xi=1

(π̃(x)− π(x)) =
∑
x≥ei

(π̃(x)− π(x)) =

= lim
k→∞

∑
y≥ei

(
P̃ k(x, y)− P k(x, y)

)
.

Theorem 1 completes the proof. 2

To consider a metapopulation with interaction matrix Q under the assumption
that the local populations on one or more patches cannot go extinct, we can
construct a new interaction matrix Q̃, where q̃ij = qij, except that q̃ii = 0 for
some is. Thus q̃ij ≤ qij and the incidences of occupancy for all patches in the
new system is larger than or equal to those in the original system.

If, on the other hand, we want to examine a metapopulation under the as-
sumption that one or more patches cannot become colonized (or, equivalently,
are always empty), we can construct a new interaction matrix Q̃, where q̃ij = qij,
except that q̃ij = 1 for some js. Here qij ≤ q̃ij and the incidences of occupancy for
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all patches in the new system will be lower than or equal to those in the original
system.

We write J−k (I) to denote the probability that patch k is occupied in a
metapopulation in which only patches in the set I can become colonized. This is
according to the argument above a lower bound for Jk. For 0 ≤ m ≤ n−2 we can
now calculate successively better lower bounds for the incidence of occupancy as
follows.

1. For i = 0, define I−0 = {1, k} .

2. For i < m, define I−i+1 from I−i by

I−i+1 = I−i ∪
{

argmax
j∈{1,2,...,n}\Ii

J−k
(
I−i ∪ {j}

)}
.

Here argmaxx∈A f(x) denotes any member x in A such that f(y) ≤ f(x),
y 6= x. We first require that all patches except patch k and the mainland are
always empty. The condition is then released, patch by patch, a total of m times.
Of course the algorithm for choosing the patch where to enable colonization is
greedy, but works well and guarantees that J−k (I−m) is a lower bound for Jk.

Analogously, I+
m is chosen so that J+

k (I+
m) is an upper bound for Jk. The only

difference is that we write J+
k (I) for the probability that patch k is occupied in

a metapopulation where all patches not in the set I are always occupied.

1. For i = 0, define I+
0 = {1, k} .

2. For i < m, define I+
i+1 from I+

i by

I+
i+1 = I+

i ∪
{

argmin
j∈{1,2,...,n}\Ii

J+
k

(
I+
i ∪ {j}

)}
.

Note that J+
k (I) and J−k (I) can be calculated by analysing a Markov chain

with only 2|I|−1 states. Appendix B.2 contains Matlab programs to perform the
iterative procedures described above.

If used on a metapopulation where dispersal between local populations is
not too large, this method can provide very close upper and lower bounds for
the incidence. If, on the other hand, all patches are closely connected to each
other, the stationary probability distribution may be drastically changed when
conditions as those above are applied. In the latter case the method may not work
very well, but can, however, often give some hints on how the metapopulation
will behave.
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3.3 Error Analysis

Whenever we consider a real metapopulation, where patch sizes and their spatial
locations are all known, and use some model to calculate the interaction matrix
Q =

[
q1 q2 · · · qn

]
, usually Q does not satisfy the lumping conditions of

section 3.1. Since the system (2.4) is practically impossible to solve in many

cases, a possible approach is to construct a matrix Q∗ =
[

q∗1 q∗2 · · · q∗n
]

that
satisfies the lumping conditions, but still is close to the original Q. If we remove
patches from the system to reduce the number of states in the Markov chain, this
is equivalent to analysing a matrix Q∗ which differs from Q.

It is the purpose of this section to investigate how the difference between Q
and Q∗ affects the stationary distribution of the number of occupied patches and
the incidence of occupancy for the patches.

We require that 0 ≤ q∗ji ≤ 1 for all i, j ∈ {1, 2, . . . , n} and define the n × n
matrix E = (eij), where eij = q∗ij/qij, and also the indicators

B(x) =

{
0, x < 1
1, x ≥ 1

,

yu(i) =

 0,
∏n

j=1 e
B(eji)
ji ≥

1−
∏n

j=1
q∗ji

1−maxj qji

1, otherwise
,

and

yl(i) =

 0,
∏n

j=1 e
1−B(eji)
ji ≤ 1−maxj qji

1−
∏n

j=1
q∗ji

1, otherwise
.

To determine a relative upper bound for the error in the Markov chain tran-
sition probabilities P (x, y) we first notice the inequalities

P ∗(x, y)

P (x, y)
=

n∏
i=1

q∗i (x)1−yi(1− q∗i (x))yi

qi(x)1−yi(1− qi(x))yi
=

=
n∏

i=1

 n∏
j=1

e
xj

ji

1−yi

·
n∏

i=1

(
1−∏n

j=1 q∗ji
xj

1−∏n
j=1 qji

xj

)yi

≤

≤
n∏

i=1

 n∏
j=1

e
B(eji)
ji

1−yi

·
n∏

i=1

(
1−∏n

j=1 q∗ji
1−maxj qji

)yi

≤

≤
n∏

i=1

 n∏
j=1

e
B(eji)
ji

1−yu(i)

·
n∏

i=1

(
1−∏n

j=1 q∗ji
1−maxj qji

)yu(i)

= δu, (3.5)
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and
P ∗(x, y)

P (x, y)
=

n∏
i=1

q∗i (x)1−yi(1− q∗i (x))yi

qi(x)1−yi(1− qi(x))yi
=

=
n∏

i=1

 n∏
j=1

e
xj

ji

1−yi

·
n∏

i=1

(
1−∏n

j=1 q∗ji
xj

1−∏n
j=1 qji

xj

)yi

≥

≥
n∏

i=1

 n∏
j=1

e
1−B(eji)
ji

1−yi

·
n∏

i=1

(
1−maxj qji

1−∏n
j=1 q∗ji

)yi

≥

≥
n∏

i=1

 n∏
j=1

e
1−B(eji)
ji

1−yl(i)

·
n∏

i=1

(
1−maxj qji

1−∏n
j=1 q∗ji

)yl(i)

= δl. (3.6)

From (3.5) and (3.6) it is now clear that

δl − 1 ≤ P ∗(x, y)− P (x, y)

P (x, y)
≤ δu − 1⇒

⇒
∣∣∣∣∣P ∗(x, y)− P (x, y)

P (x, y)

∣∣∣∣∣ ≤ max {1− δl, δu − 1} ,

and that we can pick δ so that |P ∗(x, y)− P (x, y)| < δP (x, y) holds for all x, y ∈
X. If we define ∆P = P ∗ − P, where P is the matrix form of the transition
probabilities, we have that ∥∥∥∆P T

∥∥∥
1

< δ
∥∥∥P T

∥∥∥
1

= δ, (3.7)

where the last equality uses that P is a probability matrix and has all row sums
equal to 1.

We will now consider an alternative way to compute the stationary distribu-
tion given by (2.4). First rewrite the equation in the form

0 = π(P − I2n−1)⇔ (P T − I2n−1)πT = P̃ π = 0, P̃ = (p̃ij). (3.8)

Since P has all row sums equal to 1, P̃ has all column sums equal to 0. This
implies that row 2n−1 of P̃ can be written as the negative sum of all other rows;
row 2n−1 is thus redundant. Define the (2n−1 × 2n−1) matrix A to have rows
1, 2, . . . , 2n−1 − 1 equal to the corresponding rows in P̃ , but to have all ones in
row 2n−1. The equation

AπT =


p̃1,1 · · · p̃1,2n−1

...
...

p̃2n−1−1,1 · · · p̃2n−1−1,2n−1

1 · · · 1

πT =


0
...
0
1

 = b
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has the same solution as (3.8) with the additional condition
∑2n−1

i=1 πi = 1. Define
A∗ from P ∗ in the same way and also ∆A = A∗ − A. Now we have

‖∆A‖1 ≤
∥∥∥∆P T

∥∥∥
1
,

and from (3.7) ∥∥∥∆P T
∥∥∥
1

< δ,

which together lead to
‖∆A‖1 < δ.

We can now make an estimate of
∥∥∥(π∗ − π)T

∥∥∥
1
, where π∗ is the solution to

A∗(π∗)T = b as follows. Since

π∗ − π = π∗ − b
T
(A−1)T = π∗ − π∗(A−1A∗)T =

= π∗ − π∗(A−1(A + ∆A))T = −π∗(A−1∆A)T ,

and
∥∥∥(π∗)T

∥∥∥
1

= 1, we have that∥∥∥(π∗ − π)T
∥∥∥
1
≤ ‖∆A‖1

∥∥∥A−1
∥∥∥
1

∥∥∥(π∗)T
∥∥∥
1

< δ
∥∥∥A−1

∥∥∥
1
. (3.9)

To determine the error in the approximation of the number of occupied patches
p∗(k) =

∑
ρ(φ(i))=k π∗i (cf. eq (2.6)), we consider

n∑
k=1

|p∗(k)− p(k)| =
n∑

k=1

∣∣∣∣∣∣
∑

ρ(φ(i))=k

π∗i − πi

∣∣∣∣∣∣ ≤
n∑

k=1

∑
ρ(φ(i))=k

|π∗i − πi| =

=
2n−1∑
i=1

|π∗i − πi| =
∥∥∥(π∗ − π)T

∥∥∥
1

< δ
∥∥∥A−1

∥∥∥
1
,

and in a similar way an error bound for the approximated incidence J∗i =∑
φ(j)i=1 π∗j (cf. eq (2.8)) is

n∑
i=1

|J∗i − Ji| =
n∑

i=1

∣∣∣∣∣∣
∑

φ(j)i=1

π∗j − πj

∣∣∣∣∣∣ ≤
n∑

i=1

∑
φ(j)i=1

∣∣∣π∗j − πj

∣∣∣ =

=
2n−1∑
j=1

∑
φ(j)i=1

∣∣∣π∗j − πj

∣∣∣ ≤ n
∥∥∥(π∗ − π)T

∥∥∥
1

< nδ
∥∥∥A−1

∥∥∥
1
.

Unfortunately ‖A−1‖1 is practically impossible to calculate when n is so large
that we have to make approximations in the first place. Also, even if ‖A−1‖1
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could be successfully evaluated, the resulting error limits are very rough. The
lumping of patches works acceptably well in many situations, but the error bounds
calculated can be several hundred percents in these cases. Anyway, the analysis
above shows that the distribution of the number of occupied patches and the
incidence of occupancy are continuous functions with respect to the elements in
Q.
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Chapter 4

Simulation

Because of the difficulty in obtaining analytical results that describe the metapop-
ulation properties, an attracting method to get reasonably accurate estimates of
the distribution of the number of occupied patches and the incidence is to make
some sort of simulation of the system. In this chapter a method for this is pre-
sented together with analysis of the rate of convergence.

4.1 Simulation Method

The simulation method described herein generates a trajectory {η(t)}Nt=1 from
an initial state η(0) that can be chosen arbitrarily so that η(0) ∈ D. As N
approaches infinity, the distribution of the number of times each state is visited
approaches the stationary distribution of state probabilities. In Section 4.2 the
rate of convergence is analyzed.

The fundamental step in the simulation method is a function that, given η(t)
by random determines η(t + 1). Since the total number of possible states is
very large, it is not possible to record the number of times that each state has
been visited. However, this is not necessary to get estimates of the distribution
of the number of occupied patches and the incidences of occupancy; it suffices
to count the number of times that each of the patches has been inhabited (for
calculating the incidences), and the number of times that the metapopulation
has had each number of patches inhabited during the simulation process. The
counts are divided by N to get estimates of Ji (Ĵi) and p(i) (p̂(i)). Below is a
step-by-step description of the simulation method.

1. Set current time t = 0, set the current state to the initial state (x = η(0)),
and also set pc(i) = J c

i = 0, i ∈ {1, 2, . . . , n} .

2. From the current state x, calculate the next state y in the trajectory:
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(a) Set all patches uninhabited (y = 0).

(b) For each (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}, determine by random if
patch i colonizes patch j. This is done by drawing a pseudo random
number r from U(0, 1); if it is larger than qij then we assign yj ← 1.
(We have that the probability that patch i colonizes patch j in one
time step is 1 − qij = 1 − P (r ≤ qij) = P (r > qij).) For an extensive
investigation of pseudo random number generation, see [8].

3. Increase current time by one, and assign the new state to the current (x←
y, t← t + 1).

4. Increase the counts of the number of times a specific number of patches have
been occupied and of the number of times the patches have been inhabited
(pc(

∑n
i=1 xi)← pc(

∑n
i=1 xi) + 1 and J c

i = J c
i + xi, i ∈ {1, 2, . . . , n}).

5. If t < N , continue at step 2.

6. Calculate the estimates Ĵi = J c
i /N and p̂(i) = pc(i)/N , i ∈ {1, 2, . . . , n} .

Appendix C contains a simulation program in the C programming language to
simulate the behavior of a metapopulation by the means of the method described
above.

4.2 Error Analysis

Since the Markov chain is ergodic, the probabilities P (ηi(t) = 1) = E [ηi(t)],
i ∈ {1, 2, . . . , n} converges towards the stationary incidence of occupancy Ji given
any initial state η(0), and the rate of convergence is geometric. In fact, if α is
the second largest eigenvalue for the state transition matrix P , then

|E [ηi(t)]− Ji| ≤ Cαt,

where C is a constant that can be determined from P [2]. We write Ĵi (k) for the
estimate given by simulating k steps. Formally Ĵi(k) is

Ĵi(k) =

∑k
j=1 ηi(j)

k
,

with expectation

E
[
Ĵi(k)

]
= E

[∑k
j=1 ηi(j)

k

]
=

∑k
j=1 E [ηi(j)]

k
.
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The estimate is evidently biased, and we consider

∣∣∣E [
Ĵi(k)

]
− Ji

∣∣∣ = ∣∣∣∣∣
∑k

j=1 (E [ηi(j)]− Ji)

k

∣∣∣∣∣ ≤
≤
∑k

j=1 |E [ηi(j)]− Ji|
k

≤
∑k

j=1 Cαj

k
≤ C

k(1− α)
, (4.1)

which tends to 0 as k →∞.
To determine the probability that the estimate differs from the real incidence

more than ε after k simulation steps, Chebysjev’s inequality gives

P
(∣∣∣Ĵi(k)− Ji

∣∣∣ > ε
)
≤

E
[(

Ĵi(k)− Ji

)2
]

ε2
. (4.2)

To bound the right-hand value of this inequality we consider

E
[(

Ĵi(k)− Ji

)2
]

ε2
=

Var
[
Ĵi(k)

]
+
(
E
[
Ĵi(k)

]
− Ji

)2

ε2
,

which can be bounded with the help of (4.1) and the following evaluation of

Var
[
Ĵi(k)

]
:

Var
[
Ĵi(k)

]
= Var

1

k

k∑
j=1

ηi(j)

 =

1

k

k∑
j=1

1

k
Var [ηi(j)] +

1

k

∑
j 6=l

1

k
Cov [ηi(j), ηl(l)] ,

where we have

Var [ηi(j)] = E
[
ηi(j)

2
]
− E [ηi(j)]

2 = E [ηi(j)] (1− E [ηi(j)]) ≤
1

4

since 0 ≤ E [ηi(j)] ≤ 1, and from [2]:

Cov [ηi(j), ηl(l)] ≤ Cα|j−l|

Thus we have

Var
[
Ĵi(k)

]
≤ 1

k

k∑
j=1

1

4k
+

1

k

∑
j 6=l

1

k
Cα|j−l| =

1

4k
+

2

k

k−1∑
j=1

k − j

k
Cαj ≤ 1

4k
+

2C

k(1− α)
.
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Together with equation (4.2) we can now calculate the probability of the simula-
tion error being greater than ε:

P
(∣∣∣Ĵi(k)− Ji

∣∣∣ > ε
)
≤ 1

4kε2
+

2C

k(1− α)ε2
+

C2

k2(1− α)2ε2
. (4.3)

Methods for finding the constants C and α given the state transition probability
matrix can be found in [2]. In our case, however, the size of this matrix is too
large to perform computations on it. It is a subject for further research to develop
methods for finding upper bounds for these constants.
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Chapter 5

Applications

In the metapopulations analysed in this chapter the interaction matrix Q is cal-
culated using a model that is based on models used in [5] and [6]. Let dij be the
distance from patch i to patch j (dii = 0), and Ai the area of patch i. The dis-
tance between two patches is measured from the center of one patch to the center
of the other, but any other choices for measuring the distance would be possible.
It is not necessary that dij = dji; wind or other factors could be incorporated in
the distance measure. The local extinction probabilities qii, i ∈ {1, 2, . . . , n} are

qii = e−cAi ,

and the probability that migrators from patch i does not colonize patch j in one
time step, qij, is

qij = e−bAie
−adij

,

where a, b and c are model parameters. The parameter a is a measure of how
bad the species is at migrating long distances. The parameter b describes how
densely individuals inhabit the patches, and finally c is a measure of how fast
the local extinction probabilities decrease with increasing patch size. Since all
local extinction probabilities are non-zero, there is no mainland in a system that
uses this model. In the analysis in this chapter, we will consider the stationary
probabilities in a somewhat modified metapopulation model. The lowest local
extinction probability will be changed to zero, which is equivalent to analysing
the system under the condition that one of the patches is always occupied. Results
in [5] show that we can expect a quasi-stationary behavior of the original system
that could be analysed in this way.
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Figure 5.1: Spatial locations of patches in the hypothetical metapopulation of
the example.

Patch no. (i) Area Position Ji

1 4 (0,2) 1.0000
2 1 (2,2) 0.9454
3 1.5 (6,-0.2) 0.6142
4 1 (1.5,3.5) 0.9357
5 1 (6.5,-1.5) 0.5853
6 0.5 (6,1) 0.4429

Table 5.1: Geographical data and predicted incidence of occupancy for the ex-
ample metapopulation.

5.1 A Small Patch System

In this example, we will consider the system of patches that is depicted in Fig-
ure 5.1. The model parameters are a = b = 2.5 and c = 5. We now use equations
(2.1) and (2.2), define the transition probability matrix P and solve equation
(2.4). Since this system contains only six patches, |D| = 26−1 = 32, and P is a
(32× 32) matrix. Now equations (2.6) and (2.8) are used to obtain the distribu-
tion of the number of occupied patches and the incidences of occupancy for all
patches. Table 5.1 shows the exact areas and locations of the patches and the
incidence Ji as well. We consider the system under the assumption that patch
number 1 is always occupied (patch number one is a mainland), since this patch
has the lowest local extinction probability. Figure 5.2 shows the distribution of
the number of occupied patches, which in this case is a bimodal function.

As we will now see, the bimodal distribution of the number of occupied patches
does not always imply a core-satellite distribution in the original system where
the mainland is actually a quasi-mainland and is not supposed to be inhabited
forever. It merely says that it is very probable that the metapopulation will have
either quite a lot, or just a few occupied patches. The “core-satellite switches”
may be very rare, as is the case in this example. If the metapopulation is observed
in nature, we will most probably not be able to observe any switches at all under
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Figure 5.2: Predicted stationary distribution of the number of occupied patches
in the hypothetical metapopulation from Section 5.1.

a reasonably short time of observation. In some systems the switches may be
so rare that the metapopulation has most probably become extinct before any
switches actually occur and we can think of the system as having two different
quasi-stationary probability distributions.

The patches are clearly lumped geographically in two clusters. Sometimes all
patches in the cluster not containing the mainland are empty, and sometimes one
or more of them are occupied. Introduce the indicator

θ(η(t)) = θ(t) =

{
0, η3 = η5 = η6 = 0
1, otherwise

to distinguish between these cases. Now apply equation (2.16) to calculate the
power spectrum for the Moore machine that has θ(t) as output. The total energy
is ∫ 1

2

− 1
2

R(f)df ≈ 0.2313

and the energy for signal components that have a period larger than 1000 is∫ 0.001

−0.001
R(f)df ≈ 0.2215,

which is approximately 0.96 times the total energy.
If we try to simulate the metapopulation instead of using algebraic methods

to investigate it, then one possible result is the one that has been depicted in
Figure 5.3. The estimate of the incidence of patch number 3, Ĵ3, is plotted
against the number of simulation steps. We see that after about 5 million steps,
the simulation does not seem to converge anymore, or at least converges very
slowly.

29



-

6

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

106 steps

Ĵ3

Figure 5.3: Result when simulating the hypothetical metapopulation from Sec-
tion 5.1. The estimate of the incidence of patch number 3, Ĵ3, is plotted against
the number of simulation steps.

It seems to be very common that systems that switch from having only a few
inhabited patches to having many inhabited patches with a very low frequency
are difficult to simulate. The problem is to determine when to stop the simulation
process.

5.2 A Population of Melitaea Cinxia

This section considers the metapopulation that is investigated in [7]. In an area
of 15.5 km2 in the southwest of Finland, 50 habitat patches were surveyed for
the presence or absence of the butterfly Melitaea cinxia. Figure 5.4 is a map of
the study region, where the habitat patches have been approximated to circular
discs. Geographical data for the area can be found in Table 5.2.

To make any analysis, we have to choose some values for the model parameters.
I have found that a = c = 0.001 and b = 0.00001 is a reasonable choice, that
makes the metapopulation behave in a realistic way. With this choice, the local
extinction probability for a population on patch number 9 is of the order 10−20.
We choose this patch as a mainland, and thus neglect the possibility that this
patch may become extinct. The Markov chain that represents the metapopulation
has 250−1 states, which makes all of the formulas presented in Chapter 2 useless
for practical purposes. Instead, the method to obtain lower and upper bounds
for the incidence of occupancy for the patches from Section 3.2 is used.

Table 5.2 shows the results obtained by using the method with m = 4, which
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Figure 5.4: Spatial locations of patches in the metapopulation of Melitaea cinxia
from [7]. Numerical data can be found in Table 5.2.

means systems of up to 6 patches have been analysed. The total time for all

calculations in this table was less than one hour using .m-files in MatlabTM on
a Sun Sparc 2 computer. I have found that the results get only slightly better
when m is changed from say 3 or 4 up to 6 or 7. The former choice of course
allows for much faster computations (with m = 7, the same computer took 104
hours to complete the calculations, with only marginal improvements).

Figure 5.5 shows the relation between patch size and incidence of occupancy.
The value for the incidence has been obtained by taking the mean value of the lim-
its from Table 5.2. It can be seen that our model predicts an s-shaped incidence-
area relation; this relation can be predicted by other models of immigration-
extinction equilibria, as pointed out in [1].
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Patch no. (i) Area (m2) Position (km) J−i (I−4 ) J+
i (I+

4 ) Statusa

1 26620 (3.52,1.64) 1.000 1.000 P
2 660 (2.03,4.32) 0.139 0.218 P
3 430 (3.65,4.19) 0.276 0.359 P
4 8300 (3.65,3.96) 0.999 0.999 P
5 2400 (3.88,4.12) 0.749 0.805 P
6 600 (3.84,3.85) 0.379 0.473 A
7 480 (3.73,3.58) 0.379 0.483 P
8 200 (4.51,3.19) 0.436 0.517 P
9 46000 (4.56,2.94) 1.000 1.000 P

10 2500 (4.47,2.96) 0.904 0.927 P
11 3000 (3.96,2.34) 0.935 0.957 P
12 1000 (3.93,2.33) 0.662 0.760 P
13 1300 (3.79,2.07) 0.750 0.826 P
14 18000 (3.70,2.12) 1.000 1.000 P
15 9000 (3.46,1.89) 1.000 1.000 P
16 150 (3.02,2.73) 0.343 0.489 P
17 1900 (2.79,2.61) 0.748 0.841 P
18 9000 (2.64,2.26) 1.000 1.000 P
19 15200 (2.62,2.07) 1.000 1.000 P
20 300 (1.95,2.09) 0.284 0.421 A
21 12 (2.28,1.94) 0.292 0.432 P
22 40 (2.38,1.95) 0.322 0.461 P
23 100 (2.63,1.82) 0.376 0.519 P
24 20 (2.60,1.87) 0.357 0.497 P
25 800 (3.24,2.20) 0.604 0.731 P
26 200 (3.43,2.22) 0.472 0.612 P
27 1600 (3.47,2.28) 0.780 0.859 P
28 2500 (3.34,2.27) 0.894 0.935 P
29 15600 (3.11,1.61) 1.000 1.000 P
30 100 (3.34,1.48) 0.444 0.565 A
31 1375 (5.06,1.03) 0.468 0.575 P
32 100 (4.96,1.07) 0.214 0.302 A
33 5000 (4.77,1.23) 0.977 0.984 P
34 3000 (4.83,1.08) 0.845 0.889 P
35 300 (2.94,0.99) 0.342 0.476 P
36 1500 (2.23,1.31) 0.599 0.737 A
37 1200 (2.41,0.90) 0.479 0.638 P
38 4000 (2.06,0.80) 0.921 0.956 P
39 750 (2.22,0.96) 0.361 0.527 A
40 225 (2.13,0.90) 0.239 0.383 A
41 3250 (1.85,1.16) 0.864 0.921 P
42 12 (1.70,1.17) 0.183 0.309 A
43 450 (1.76,1.26) 0.277 0.426 P
44 8000 (1.92,1.39) 0.999 0.999 P
45 1050 (1.12,0.87) 0.261 0.404 P
46 4800 (0.76,0.41) 0.889 0.936 P
47 100 (3.75,2.25) 0.461 0.587 P
48 1800 (4.22,2.71) 0.806 0.861 P
49 400 (3.80,2.28) 0.530 0.650 P
50 1000 (2.46,0.78) 0.411 0.573 P

Table 5.2: The metapopulation of Melitaea cinxia investigated in lower and upper
bounds for the incidence calculated by the method described in Section 3.2.

aStatus of the patch when investigated (Presence/Absence).
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Figure 5.5: Plot of the predicted incidence of occupancy versus patch area when
the metapopulation model is used on the data from [7].
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Appendix A

Program that Calculates Ji and
p(k)

This appendix contains Matlab .m-files to calculate the stationary probabilities
discussed in section 2.1. The first file provided is one that calculates the interac-
tion matrix Q from the model in Chapter 5 given the model parameters a, b and
c, the patch areas and also the coordinates of the patches in a metapopulation.

function Q=qbymodel(a,b,c,A,pos)

%The function qbymodel.m calculates the probabilities that

%patches do not colonize each other according to the model

%described in Chapter 5.

%

%Function call: Q=qbymodel(a,b,c,A,pos)

%

%Inputs: a Measure of how bad individuals are at migrating

% long distances.

% b Measure of the carrying capacity per area unit.

% c Measure of how good individuals are at surviving.

% A Vector containing the area of the patches.

% pos A (2 x n) matrix with each column describing the

% position of a patch.

%

%Output: Q The calculated interaction matrix for the system.

n=length(A);

%------------------------------------------------------------

% Calculate distance between patches

34



%------------------------------------------------------------

tmp1=ones(n,1)*pos(1,:);

tmp2=pos(1,:)’*ones(1,n);

tmp3=ones(n,1)*pos(2,:);

tmp4=pos(2,:)’*ones(1,n);

d=sqrt((tmp1-tmp2).^2+(tmp3-tmp4).^2);

%------------------------------------------------------------

% Now calculate the matrix Q from areas and distances

%------------------------------------------------------------

Q=exp(-b*exp(-a*d).*(ones(n,1)*A)’);

Q=Q-diag(diag(Q,0));

Q=Q+diag(exp(-c*A));

%------------------------------------------------------------

% Patch no 1 is mainland

%------------------------------------------------------------

Q(1,1)=0;

The following .m-file calculates the stationary probabilities given an interac-
tion matrix Q, from the program above.

function [p,P,w,J]=metapop(Q)

%The function metapop.m calculates the stationary probabilities

%of the metapopulation model used in this text.

%

%Function call: [p,P,w,J]=metapop(Q)

%

%Input: Q The interaction matrix where Q(i,j) is the

% probability that patch i will not colonize

% patch j in one time step.

%

%Outputs:p Row vector describing the stationary distribution

% of the number of occupied patches.

% P Transition matrix for the Markov process.

% w Stationary probabilities for all states.

% J Incidence for patches in the metapopulation.

n=length(Q);

%------------------------------------------------------------
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% Construct the matrix bits, which have 2^(n-1) columns

% each describing one state.

%------------------------------------------------------------

oneline=ones(1,2^(n-1));

D1=[2^(n-1):2^n-1];

bits=ones(n,1)*D1;

weights=2 .^[n-1:-1:0]’*oneline;

bits=1-(floor(bits./weights)/2 == floor(bits./weights/2));

%------------------------------------------------------------

% Calculate the probabilities from equation (2.1).

%------------------------------------------------------------

q=ones(n,2^(n-1));

for i=1:n,

q(i,:)=prod((Q(:,i)*oneline).^bits);

end;

%------------------------------------------------------------

% Now calculate the state transition matrix P.

%------------------------------------------------------------

P=ones(2^(n-1),2^(n-1));

for x=1:2^(n-1),

P(x,:)=

prod((q(:,x)*oneline).^(1-bits).*((1-q(:,x))*oneline).^bits);

end;

%------------------------------------------------------------

% Find the eigenvector w that has eigenvalue 1.

%------------------------------------------------------------

[V,D]=eig(P’);

I=find(sum(D)>0.999999);

if length(I)>1,

V,sum(D),P,Q

I=input(’Which one is 1?’);

end;

w=V(:,I)/sum(V(:,I));

%------------------------------------------------------------

% Now calculate the incidence and stationary distribution

% of the number of occupied patches.

%------------------------------------------------------------
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p=sum(w*ones(1,n).*((ones(n,1)*sum(bits))’==oneline’*[1:n]));

w=w’;

J=[1:n];

for i=1:n,

J(i)=sum(w(find(bits(i,:)==1)));

end;
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Appendix B

Programs that Estimate Ji and
p(k)

In this appendix we provide Matlab .m-files to calculate estimates as described
in Chapter 3.

B.1 Calculation with Lumped Metapopulation

The method described in Section 3.1 is implemented in the following program.
The program does not require the lumping conditions to hold, but instead cal-
culates the geometric mean of all values that are required to be equal by the
method.

function [p,P]=lumppop(Q,G)

%The function lumppop.m calculates an approximation of the

%result given by metapop.m, given that patches are lumped as

%described in Section 3.1.

%

%Function call: [p,P]=lumppop(Q,G)

%

%Inputs: Q The interaction matrix where Q(i,j) is the

% probability that patch i will not colonize

% patch j in one time step.

% G Partitioning of patches.

% Each row in this matrix describes one lump. The

% mainland (patch no 1) must not occur in any lump!

%

%Outputs:p Row vector describing the stationary distribution
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% of the number of occupied patches.

% P Transition matrix for the Markov process.

%

% This function does not check for Q to satisfy the conditions

% reqiured to be able to lump patches. Instead it calculates

% the geometric mean of all probabilities that are assumed to

% be equal.

n=length(Q);

%------------------------------------------------------------

% First make sure that G contains all patches. That is,

% add lumps with only one member if some patches are not

% present in G.

%------------------------------------------------------------

[ng,l]=size(G);

if l==0, l=1; end;

for i=[n:-1:1],

if length(find(G==i))==0,

G=[i zeros(1, l-1);G];

end;

end;

%------------------------------------------------------------

% Calculate the number of lumps, and the number of patches

% in each.

%------------------------------------------------------------

[ng,l]=size(G);

np=[sum([G zeros(ng,1)]’ ~= 0) 1];

%------------------------------------------------------------

% Produce all states for the lumped Markov chain.

%------------------------------------------------------------

state=[1 zeros(1, ng)];

while state(ng+1)==0,

s=[s;state([1:ng])];

i=2;

while state(i)==np(i),

state(i)=0;

i=i+1;

end;
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state(i)=state(i)+1;

end;

[ns,tmp]=size(s);

%------------------------------------------------------------

% Calculate the geometric mean for all entries that should

% be equal in Q.

%------------------------------------------------------------

for i=1:ng,

g=G(i,find(G(i,:)~=0));

t=diag(Q); t=prod(t(g))^(1/np(i));

Q(g(1),g(1))=t;

if np(i) > 1,

r=Q(g,g); r=r-diag(diag(r))+diag(ones(1,np(i)));

r=prod(prod(r))^(1/(np(i)^2-np(i)));

Q(g(1),g(2))=r;

end;

for j=[1:i-1 i+1:ng],

Q(G(j,1),g(1))=

prod(prod(Q(G(j,[1:np(j)]),g)))^(1/np(i)/np(j));

end;

end;

%------------------------------------------------------------

% Calculate the state transition probabilities.

%------------------------------------------------------------

P=ones(ns,ns);

for x=1:ns,

q=ones(ng,max(np)+1);

for i=1:ng,

g=G(i,find(G(i,:)~=0));

gl=length(g);

for yi=0:np(i),

t=Q(g(1),g(1));

if gl > 1,

r=Q(g(1),g(2));

else

r=1;
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end;

o=prod(Q(G([1:i-1 i+1:ng],1),g(1))’.^

s(x,[1:i-1 i+1:ng]));

j=[max([0 s(x,i)+yi-gl]):min([s(x,i) yi])];

over1=over(s(x,i),j);

over2=over(gl-s(x,i),yi-j);

prob=over1.*(1-t*r^(s(x,i)-1)*o).^j.*

(t*r^(s(x,i)-1)*o).^(s(x,i)-j).*

over2.*(1-r^s(x,i)*o).^(yi-j).*

(r^s(x,i)*o).^(gl-yi-s(x,i)+j);

q(i,yi+1)=sum(prob);

end;

end;

for y=1:ns,

P(x,y)=prod(q(s(y,:)*ng+[1:ng]));

end;

end;

%------------------------------------------------------------

% At last, calculate the Perron-Frobenius eigenvector and

% the distribution of the number of occupied patches.

%------------------------------------------------------------

[V,D]=eig(P’);

[M,I]=max(sum(D));

out=V(:,I)/sum(V(:,I));

p=[1:n];

for i=1:n,

p(i)=sum(out(find(sum(s’)==i)));

end;

The program above requires requires the following piece of code to work.

function n=over(a,b)

%Function call: n=over(a,b)

%

%This function takes an integer and an integer vector and produces
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%an integer vector where elements are:

%

% a!

% n(i)=---------------

% b(i)! (a-b(i))!

n=b;

for i=1:length(b),

n(i)=prod([1 2:a])/prod([1 2:b(i)])/prod([1 2:a-b(i)]);

end;

B.2 Upper and Lower Bounds for the Incidence

The method for obtaining upper and lower bounds for the incidence of occupancy
described in Section 3.2 is implemented in the following two .m-files. The first
calculates a lower bound for the incidence of occupancy for a specific patch, and
the second calculates an upper bound and works much in the same way.

function mn=minjc(Q,m,c)

%The function minjc.m calculates a lower limit for the

%incidence of occupancy for patch number c given the

%interaction matrix Q by the method described in Section 3.2.

%

%Function call: function mn=minjc(Q,m,c)

%

%Inputs: Q The interaction matrix where Q(i,j) is the

% probability that patch i will not colonize

% patch j in one time step.

% m The number of patches for which the condition that

% they can not become occupied are removed.

% c The patch for which the calculations should be done.

%

%Output: mn Lower limit for the incidence for patch number c.

[n, tmp]=size(Q);

%------------------------------------------------------------

% The sets(vectors) incl and excl keep track of which

% patches are considered. Patch number c will always be

% number 2 in the new constructed metapopulation. We keep

% the best limit so far in mn.
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%------------------------------------------------------------

incl=[1 c];

excl=[2:c-1 c+1:n];

[p,P,w,J] = metapop(Q(incl,incl));

mn=J(2);

%------------------------------------------------------------

% Add one more patch at a time to the system.

%------------------------------------------------------------

for i=1:m,

%----------------------------------------------------

% Try which of the not yet included patches gives

% the best result.

%----------------------------------------------------

bsf_ix = 1;

for j=1:length(excl),

pop=[incl excl(j)];

[p,P,w,J] = metapop(Q(pop,pop));

if J(2)>mn,

mn=J(2);

bsf_ix = j;

end;

end;

incl=[incl excl(bsf_ix)];

excl=excl([1:bsf_ix-1 bsf_ix+1:length(excl)]);

end;

function mx=maxjc(Q,m,c)

%The function maxjc.m calculates an upper limit for the incidence

%of occupancy for patch number c given the interaction matrix Q by

%the method described in Section 3.2.

%

%Function call: function mx=maxjc(Q,m,c)

%

%Inputs: Q The interaction matrix where Q(i,j) is the

% probability that patch i will not colonize

% patch j in one time step.

% m The number of patches for which the condition that

% they can not become empty are removed.

% c The patch for which the calculations should be done.

%
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%Output: mx Upper limit for the incidence for patch number c.

[n, tmp]=size(Q);

%------------------------------------------------------------

% The sets(vectors) incl and excl keep track of which

% patches are considered. Patch number c will always be

% number 2 in the new constructed metapopulation. We keep

% the best limit so far in mx.

% To remove the patches that are always inhabited from the

% system, we recalculate the probability that migrators from

% the mainland occupy the other patches.

%------------------------------------------------------------

incl=[1 c];

excl=[2:c-1 c+1:n];

Q1=Q(incl,incl);

Q1(1,:)=prod(Q([1 excl],incl));

[p,P,w,J] = metapop(Q1);

mx=J(2);

%------------------------------------------------------------

% Add one more patch at a time to the system.

%------------------------------------------------------------

for i=1:m,

%----------------------------------------------------

% Try which of the not yet included patches gives

% the best result.

%----------------------------------------------------

bsf_ix = 1;

for j=1:length(excl),

pop=[incl excl(j)];

%--------------------------------------------

% Recalculate Q(mainland,:) for each system.

%--------------------------------------------

Q1=Q(pop,pop);

Q1(1,:)=prod(Q([1 excl([1:j-1 j+1:length(excl)])],pop));

[p,P,w,J] = metapop(Q1);
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if J(2)<mx,

mx=J(2);

bsf_ix = j;

end;

end;

incl=[incl excl(bsf_ix)];

excl=excl([1:bsf_ix-1 bsf_ix+1:length(excl)]);

end;
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Appendix C

Simulation Program

This is a simple implementation of the simulation method described in Section 4.1.
In contrast to the programs in the preceding appendices, this program is written
in C to allow for much faster computations. The program simply reads input
data from the standard input and writes it’s result back to the standard output.
When used for a specific purpose, as for generating Figure 5.3, the output part
of the program could easily be modified to produce output of whatever form is
needed.

#include <stdlib.h>

#include <math.h>

#define MAXDIM 200 /* Maximum number of patches */

int n;

double q[MAXDIM][MAXDIM]; /* The interaction matrix Q */

int p1[MAXDIM] = {1}; /* Initial state */

long dist[MAXDIM], inc[MAXDIM]; /* Cumulative number of occupied

/* patches and number of times

/* each patch was visited */

/* This is an implementation of a fibbonacci random number

generator with lags 33 and 97. */

double u[100];

void initcrand(void) {

int i;

for (i = 0; i < 100; i++)
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u[i] = (double)(rand()%1000) / 1000;

}

double crand(void) {

static i = 97, j = 33;

double res;

if ((res = u[i]-u[j]) < 0)

res++;

u[i]=res;

if (--i == 0) i = 97;

if (--j == 0) j = 97;

return res;

}

/* This function takes care of one time step of disperal

between patches. It changes the current state (p1). */

void makemove(void) {

int i, j;

int p2[MAXDIM];

for (j = 0; j < n; j++) {

p2[j]=0;

for (i = 0; !p2[j] && i < n; i++)

if (p1[i] && crand() >= q[i][j])

p2[j] = 1;

}

for (j = 0; j < n; j++)

p1[j]=p2[j];

}

/* This function simulates length time steps and incremants dist

and inc accordingly. */

void simu(long length) {

long i, j, k;

for (i=0; i<length; i++) {

makemove();
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for (k = j = 0; j < n; k += p1[j++])

inc[j] += p1[j];

dist[k-1]++;

}

}

/* Main funtion of the program. Reads the number of patches

(dimension of the matrix Q) and the matrix Q itself, row

by row, from stdin.

Prints periodical output of estimates on stdout. */

void main(void) {

long i, j, k, l = 0;

double nn;

initcrand(); /* Initialize random number generator */

/* Read the input data */

scanf("%lf",&nn); n = nn;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

scanf("%lf", &q[i][j]);

/* Make 5*200000 simulation steps, and produce output every

200000 steps. Subject to modification! */

for (k = 0; k < 5; k++) {

simu(200000l); l += 200000l;

/* Print current estimates */

printf("Number of steps: %ld\n", l);

printf("i\tJ(i)\tp(i)\n");

printf("----------------------\n");

for (i = 0; i < n; i++)

printf("%d\t%5.3lf\t%5.3lf\n",

i+1, (double)inc[i]/l, (double)dist[i]/l);

printf("\n");

}

}
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