
Symmetric Approximation Arguments for
Monotone Lower Bounds without Sunflowers

Christer Berg∗ Staffan Ulfberg∗

23. December 1997

Abstract

We propose a symmetric version of Razborov’s method of approxima-
tion to prove lower bounds for monotone circuit complexity. Traditionally,
only DNF formulas have been used as approximators, whereas we use both
CNF and DNF formulas. As a consequence we no longer need the Sun-
flower lemma that has been essential for the method of approximation.
The new approximation argument corresponds to Haken’s recent method
for proving lower bounds for monotone circuit complexity (counting bot-
tlenecks) in a natural way.

We provide lower bounds for the BMS problem introduced by Haken,
Andreev’s polynomial problem, and for Clique. The exponential bounds
obtained are the same as the previously best known for the respective
problems.

1 Introduction
The difficulty of proving super-linear lower bounds for general circuit complex-
ity has led to the study of various restrictions of this computational model.
One of these is monotone circuits, i.e., only AND gates and OR gates are al-
lowed. Since many important problems in complexity theory are monotone, this
computational model seems to be a natural one. Examples of monotone graph
problems are Clique, Vertex cover, and Hamiltonian path, which are all NP-
complete. However, for long there were no stronger lower bounds for monotone
than for general circuits; the best one was only 4n (by Tiekenheinrich [14]). A
major breakthrough came in 1985, when Razborov [11] invented the method of
approximation. It allowed him to prove a super-polynomial lower bound as he
showed that Clique requires monotone circuits of size nΩ(log n). Shortly there-
after, Andreev [3] applied Razborov’s technique to another function and was
thereby able to prove an exponential lower bound. Later, both these results
were improved by Alon and Boppana [1], and in particular, they were the first
to prove an exponential lower bound for Clique. For a nice exposition of this
result, see Section 4 in the survey by Boppana and Sipser [5].

The idea behind the approximation method is the following. The output of
each gate in a given circuit is approximated by a function, the approximator for

∗Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
S-100 44 Stockholm, Sweden. E-mail: {berg,staffanu}@nada.kth.se.

1

that gate. The goal is to find a set of approximator functions with the following
properties. For every gate in the circuit, the approximator should introduce
only few errors. Also, the approximator for the output gate should differ from
the function computed by the circuit for many input values. If this goal is
accomplished we have proved that the circuit must be large since errors in the
approximator for the output gate must emerge from the approximation of some
gate in the circuit.

In 1995, Haken [7] proposed a new method, which he named “Bottleneck
counting,” for proving lower bounds for the size of monotone circuits. He demon-
strated the method for a graph problem that resembles Clique. Instead of trying
to approximate the behavior of the circuit, he defined a function µ which maps
input graphs to gates of the circuit. To prove that the circuit contains many
gates, he then showed that on one hand the total number of graphs mapped
by µ is large, but on the other hand that only few graphs are being mapped to
each gate.

One purpose of this paper is to show that Haken’s approach to lower bounds
is in fact an approximation argument in disguise: it can be turned into an
approximation argument by using approximators that for a gate e introduce
errors for exactly those inputs that are mapped to e by Haken’s function µ.
The approximation version of Haken’s proof is in Section 5.

It is of course nice that Haken’s method of bottleneck counting works in es-
sentially the same way as Razborov’s approximation method, but unfortunately
this leads to the conclusion that it cannot be used to prove lower bounds better
than Ω(n2) for general circuits. The reason for this is, as Razborov showed, that
the method of approximation will not work very well for general circuits [12].

Pudlák [10] extended Razborov’s approximation method to hold for circuits
consisting bounded fan-in gates computing monotone real functions. The corre-
sponding extension of Haken’s method was made by Haken and Cook [8]. Based
on Haken’s idea, Jukna [9] was able to derive a general criterion for lower bounds
that holds for both monotone boolean and monotone real circuits. Wigderson
independently discovered that Haken’s method can be turned into an approxi-
mation argument, and he also noted that this holds for the extension made by
Haken and Cook. The extension to real monotone circuits can be found in [4].

Another purpose of the paper is to make the approximation method simpler
and more symmetric. Our approximation argument, which is derived from the
translation of Haken’s proof, differs from that of Razborov in that we use two
approximator functions for each gate. Razborov used only one approximatior
function which is a monotone depth two circuit. Out of the two possibilities for
the form of such circuits, a disjunction of conjunctions or the other way around,
Razborov chose the former.

In this paper, however, we do not make this choice at all since we use two
approximator functions for each gate—one for each of the two possible forms.
This seems like a natural thing to do, and one consequence is that we do not
have to use the Sunflower lemma by Erdős and Rado [6]. The Sunflower lemma
is traditionally used to reduce the size of the approximator functions while
not reducing their approximation qualities too much. The fact that we do not
need this lemma is somewhat surprising since it is a central part in earlier
approximation results. Although we are unable to improve the bounds obtained
by Alon and Boppana, this approach leads to shorter and, to our minds, simpler
proofs.

2

Note that while most of the known lower bounds obtained using the method
of approximation may benefit from being reformulated in this way, it is not clear
that all of them do. We do not, for example, know how to present Razborov’s
super-polynomial lower bound for perfect matching (which implies that mono-
tone circuits are strictly less powerful than non-monotone) using CNF and DNF
approximators.

1.1 Recent work
Ideas from the bottleneck counting argument were also used by Amano and
Maruoka [2] to develop approximators similar to the ones presented in this
paper. They used the approximators to prove lower bounds for Clique and
Andreev’s polynomial problem.

Simon and Tsai [13] showed that the bottleneck counting argument is actu-
ally equivalent to the method of approximation. They provided a proof of the
fact that errors in the approximation method correspond to mapped inputs in
bottleneck counting.

2 Definitions
A monotone circuit Ψ is a boolean circuit with AND gates (∧) and OR gates
(∨), but without NOT gates. We let all gates have arbitrary fan-in and fan-out,
and measure the size of a circuit, size(Ψ), by the number of gates it contains.

The monotone functions for which we provide lower bounds are all graph
problems. An input graph on n vertices is represented in a standard way: as(
n
2

)
variables xi,j whose value is 1 if the edge (i, j) exists.
The output of a gate e in Ψ when the input x is applied to the circuit is

denoted by e(x). Let the output gate be eo so that the circuit Ψ computes the
boolean function eo(x).

Our proofs are based on the method of approximation which was invented
by Razborov [11]. It involves the use of a boolean function to approximate
the output of every gate in a given circuit. The approximator functions used
by Razborov, Andreev [3], and Alon and Boppana [1] are all monotone DNF
formulas.

The proofs in this paper, however, are influenced by the work of Haken [7],
and every gate e in a circuit Ψ is approximated by two functions fD

e and fC
e ,

the approximators for the gate e. The approximator fD
e has the form C1 ∨C2 ∨

· · · ∨ Ct, where Ci is a conjunction of limited size: all conjunctions have less
than c distinct literals. The approximator fC

e has the form D1 ∧D2 ∧ · · · ∧Ds,
where Di is a disjunction containing less than d distinct literals. (Notice that
we put no explicit restriction on the numbers s and t.)

The following characteristics of the approximator functions fD
e and fC

e are
essential to the proof.

1. The approximators fD
eo(x) and fC

eo(x) fail to correctly represent the output
of Ψ for many inputs x.

2. For every gate e, the number of inputs for which the approximators intro-
duce errors (measured in a specific way) is small.

3

For every x for which the approximators for eo fail, the error must have
been introduced in at least one of the gates in Ψ. We can therefore draw the
conclusion that Ψ contains many gates.

For convenience we consider the inputs to the circuit as being gates them-
selves, and for an input variable xi,j we simply define fD

xi,j
= fC

xi,j
= xi,j . We

also define empty disjunctions to have the value 0, and empty conjunctions to
have the value 1.

Definition 1. For a gate e and an input x for which e(x) = eo(x), we say that
the approximator fD

e fails for x if fD
e (x) 6= e(x), and that the approximator fC

e

fails for x if fC
e (x) 6= e(x).

If either fD
e or fC

e fails for x, we say that the approximators for the gate e
fail for the input x.

A central part of the proofs is counting the number of errors that are intro-
duced in the gates of Ψ. This is defined as follows.

Definition 2. An approximator, fD
e or fC

e , is said to introduce an error for
the input x if it fails on the input x, but none of the approximators for the input
gates to e fail for the input x.

If either fD
e or fC

e introduces an error for the input x, we say that the
approximators for the gate e introduce an error for the input x.

We now describe how an ∧ gate e is approximated assuming that its input
gates are already approximated by fD

e1 , f
D
e2 , . . . , f

D
em and fC

e1 , f
C
e2 , . . . , f

C
em .

The approximator fC
e is simply defined as

fC
e =

m∧
i=1

fC
ei =

s∧
i=1

Di,

in which all disjunctions still have length at most d. If none of fC
e1 , f

C
e2 , . . . , f

C
em

fails for the input x, neither will fC
e , so the approximator fC

e introduces no
errors.

The approximator fD
e should be a disjunction of conjunctions; it is formed

by converting fC
e into the form

t∨
i=1

Ci.

The standard way for doing this is to form a conjunction Ci for every possi-
ble way to pick one literal from each disjunction Di in fC

e . All conjunctions
that have at least c distinct literals are then discarded, which means that long
conjunctions are approximated by the constant 0.

In the proofs to follow we need to establish upper bounds for the number of
errors introduced when forming fD

e from fC
e . To get as good bounds as possible,

we have to be more careful when forming fD
e (so that more conjunctions get

shorter than c). We will shortly describe the process we actually use in detail.
Returning to the definitions of fD

e and fC
e , we note that fD

e is produced from
fC
e , which in turn is constructed from the approximators fC

ei of the input gates.
Thus, when approximating an ∧ gate, we do not use the approximators fD

ei for
the input gates.

The approximator functions for an ∨ gate e are formed analogously. We
construct fD

e from the approximators fD
ei of the input gates; this introduces no

4

errors. The disjunction of conjunctions is then converted into a conjunction
of disjunctions, and disjunctions with at least d distinct literals are discarded
(they are in effect approximated by the constant 1). Notice that the way the
approximators are constructed we have fD

e ≤ fC
e for all gates e.

We now end this section by describing the details involved when converting
fC
e to fD

e in an ∧ gate (this part is analogous for ∨ gates as well).
A set of conjunctions is formed that have the property that at least one of

them is satisfied if and only if all disjunctions in fC
e are satisfied. The approxi-

mator fD
e is then formed from all resulting conjunctions shorter than c.

The rewriting process can be viewed as the construction of a tree: Each
edge in the tree is labeled by a literal. For every node v in the tree we define
a corresponding conjunction that is formed by all literals on the path from the
root to v.

At the root we create one labeled edge to a new child for each of the literals
in the first disjunction. We say that we have expanded D1 under the root.

Suppose w is a leaf that was created while expanding Di, and that C is
the conjunction corresponding to w. Then, D1, . . . , Di are all satisfied if C is
satisfied. We now take care of Di+1.

First consider the case that when C is satisfied, we know that for all accepting
instances of the problem at least one of the literals in Di+1, say xu,v, must be
satisfied as well. (This happens if Di+1 contains a literal in common with C,
but it could also happen in some other situations if there are restrictions on the
possible inputs.) We then make only one new child under w for the literal xu,v
and skip the rest of Di+1. This results in fewer leaves in the tree and therefore
fewer conjunctions.

Otherwise, we expand the disjunction Di+1 under w.
The result is that if the conjunction corresponding to one of the new children

is satisfied, so is Di+1. Conversely, if all of D1, . . . , Di+1 are satisfied, there is a
node on depth i+ 1 in the tree whose corresponding conjunction is satisfied.

When there are no more leaves for which there are remaining disjunctions
to expand, we are done and we get one conjunction for each leaf in the tree.
Leaves whose corresponding conjunctions have at least c distinct literals are then
removed, and this is the reason why fD

e may make an error for some inputs.
Note that such inputs are always accepted by some conjunction (correspond-

ing to a node in the tree) that has exactly c distinct literals, and bounding the
number of such conjunctions is the reason for constructing the tree. By count-
ing the number of inputs accepted by each conjunction, we can therefore get an
upper bound for the number of errors introduced by fD

e .

5

3 The proof method
Although they differ in details, the basic strategy for the proofs is the same
in the following sections. In this section we therefore describe the strategy by
giving generic versions of the theorem, and of the lemmas that are used in the
proof of the theorem.

The generic theorem and lemmas contain various unspecified entities, such as
numerical functions α, β, and γ. The outline can be turned into an actual proof
of an actual theorem by specifying these entities (and checking their required
properties).

Let MGP(n) be a monotone language on graphs with n input variables
(which indicate the presence or absence of edges). For some function h(n)
we want to prove the following.

Generic Theorem. The monotone circuit complexity for MGP(n) is at least
h(n).

Generic proof. Suppose we are given a circuit Ψ that correctly decides MGP(n).
In order to prove that Ψ must consist of at least h(n) gates, we study two subsets
of the possible input graphs: the positive test graphs, which is a subset of the
graphs in MGP(n), and the negative test graphs, which is a subset of the graphs
not in MGP(n). Let γ1(n) be the number of positive test graphs and γ0(n) the
number of negative test graphs.

Instead of directly proving that a circuit that decides MGP(n) must be large,
we prove that a circuit that separates the positive and negative test graphs from
each other must be large; choosing the test graphs in a suitable way is of course
essential.

We start by showing that the approximators for the output gate of Ψ fail
for most inputs.

Generic Lemma A. At the output gate eo, the approximators either fail for
all negative test graphs or they fail for at least half of the positive test graphs.

Generic proof. Assume that the approximators do not fail for all negative test
graphs; otherwise there is nothing to prove. Hence, there exists a negative test
graph b such that fC

eo(b) = 0 which implies that fC
eo contains a disjunction D.

Furthermore, for all positive test graphs g on which fC
eo is correct, we must

have D(g) = 1. Since D contains less than d distinct literals, we can bound the
fraction of positive test graphs for which fC

eo = 1 by multiplying the fraction of
positive test graphs for which any specific edge is present with d. A suitable
choice of d proves the lemma.

The next objective is to bound the number of inputs for which the approx-
imators introduce errors at a single gate. Assume e is an ∧ gate. In this case
fC
e introduces no errors at all, and hence, we need only study fD

e . Also, since
fD
e ≤ fC

e , no errors are ever introduced for negative test graphs in ∧ gates. The
next two lemmas introduce the functions α and β as bounds for the number of
errors introduced in a single ∧ and ∨ gate respectively.

Generic Lemma B. At an ∧ gate e, the approximator fD
e introduces an error

for at most α(n, c, d) positive test graphs.

6

Generic proof. To prove the lemma, we give an upper bound on the number
of positive test graphs g such that C(g) = 1 (g is accepted by C), where C is
any conjunction with c distinct literals corresponding to a node in the tree that
represents the rewriting process.

For each node in the tree that has more than one child, the number of children
is bounded by d, and descending to such a child always adds a distinct literal
to the corresponding conjunction. There are therefore at most dc conjunctions
with exactly c distinct literals. It remains to find out the number of positive
test graphs accepted by each such conjunction.

This is easily done if the edges in the positive test graphs are present in-
dependently from each other (as is the case in the lower bound for Andreev’s
polynomial problem in Section 4). If the problems are specified in terms of ver-
tices (e.g., the BMS problem in Section 5 and Clique in Section 6), we have to
be a bit more careful since edges are not independent in the natural test graphs
for these problems. Actually, in the proofs for these specific problems, we do
not limit the number of distinct literals in conjunctions, but introduce another
more natural measurement of their size.

The lemma should now follow from multiplying the number of conjunctions
that have c distinct literals by the number of inputs accepted by each such
conjunction.

The following lemma is analogous and it is proved by bounding the number
of errors introduced on negative test graphs when fC

e is formed from fD
e .

Generic Lemma C. At an ∨ gate e, the approximator fC
e introduces an error

for at most β(n, c, d) negative test graphs.

To finish the proof of the generic theorem we need to consider the two cases
from Generic Lemma A. First, if the approximators fail for all negative test
graphs, Generic Lemma C implies that size(Ψ) ≥ γ0(n)/β(n, c, d). Otherwise
the approximators fail for at least half of the positive test graphs and then
Generic Lemma B implies that size(Ψ) ≥ γ1(n)/(2α(n, c, d)). So if h(n) is less
than both these values, we are done.

4 Andreev’s polynomial problem
The best lower bound for the size of monotone circuits computing any monotone
function was proved by Alon and Boppana [1]. The function for which this
bound was obtained was the same that Andreev [3] used when he was the first
to prove an exponential lower bound for a monotone problem.

We are given a bipartite graph G = (U, V,E) with vertex sets U = GF[q]
and V = GF[q], where q is a prime power. The problem POLY(q, s) is to decide
whether there exists a polynomial p over GF[q] of degree at most s−1 such that
∀i ∈ U : (i, p(i)) ∈ E.

Theorem 3 (Alon and Boppana [1]). The monotone circuit complexity for
POLY(q, s) is qΩ(s) when s ≤ 1

2

√
q/ ln q.

Proof. We first define the set of positive test graphs used in the proof. There
are qs different polynomials of degree at most s− 1, each of which corresponds
to a positive test graph in a natural way: the polynomial p defines a test graph
with the edges E = {(i, p(i)) | i ∈ U}.

7

The negative test graphs are constructed randomly, by having each possible
edge appear with probability 1−ε for ε = (2s ln q)/q. Notice that this construc-
tion may result in all possible bipartite graphs on 2q vertices; therefore we need
the following lemma.

Lemma 4. The probability that a negative test graph is in POLY(q, s) is at
most q−s.

Proof. The probability that the q specific edges that correspond to a certain
polynomial are present in a randomly chosen negative test graph is (1− ε)q. So
the probability that the edges corresponding to at least one of the qs possible
polynomials are present in a random graph is at most

qs(1− ε)q ≤ qse−εq = qsq−2s = q−s.

We choose the parameters c = s and d = q2/3/2.

Lemma 5 (Specialization of Generic Lemma A). At the output gate eo, we
either have that the approximator fC

eo is identically 1, or that the approximators
for eo fail for at least half of the positive test graphs.

Proof. If fC
eo is identically 1 we are in the first case. Otherwise, there is a graph

b such that fC
eo(b) = 0, and hence there is a disjunction D in fC

eo . There are
qs−1 positive test graphs that contain any specific edge since fixing an edge
is equivalent to fixing the value of a polynomial in one point. Thus, there
are at most dqs−1 = qs−1/3/2 positive test graphs that contain at least one
edge from D. Hence D (and therefore also fC

eo) is 1 for at most a fraction
qs−1/3/(2qs) = q−1/3/2 of the positive test graphs.

Lemma 6 (Specialization of Generic Lemma B). At an ∧ gate e, fD
e introduces

an error for at most dc positive test graphs.

Proof. When rewriting fC
e to fD

e , we can form at most dc conjunctions that
contain c distinct literals, and for the current function, each removed conjunction
introduces an error on at most one positive test graph. This follows since c = s
and since a polynomial of degree s − 1 is completely specified by s function
points.

Lemma 7 (Specialization of Generic Lemma C). At an ∨ gate e, the probability
that fC

e introduces an error for a random negative test graph is at most (cε)d.

Proof. We bound the probability of an error being introduced for a random
negative test graph by multiplying the number of disjunctions with d distinct
literals, cd, by the probability that the d literals are 0 in one disjunction, which
is εd.

Notice that, in particular, the upper bound in the lemma holds for the
number of errors introduced for negative test graphs that are not in the lan-
guage POLY(q, s).

To prove the theorem we have to consider the two cases from Lemma 5.
If the approximators fail for at least half of the positive test graphs we use

8

Lemma 6 which states that the number of errors introduced in a single ∧ gate
is at most dc to get

size(Ψ) ≥ qs

2dc
=

2sqs/3

2
∈ qΩ(s).

If, on the other hand, the approximator fC
eo is identically 1, the approxima-

tors for eo fail for a random negative test graph with probability 1− q−s ≥ 1/2
by Lemma 4. The probability of introducing an error in a single ∨ gate is at
most (cε)d; thus

size(Ψ) ≥ 1

2(cε)d

=
1

2

(
q

2s2 ln q

)q2/3/2

=
1

2
2q

2/3/2 ∈ qΩ(s).

5 Broken Mosquito Screens
The Broken Mosquito Screens (BMS) problem was introduced by Haken [7] to
illustrate how to count bottlenecks to show that monotone P 6= NP. In this
section we show that the same result can be obtained using our approximator
formalism.

Haken defines the BMS problem for graphs with m2−2 vertices as the prob-
lem of distinguishing good and bad graphs from each other. Graphs containing
m − 1 cliques of size m and one clique of size m − 2 (but no other edges) are
good; graphs containing m− 1 independent sets of size m and one independent
set of size m−2 but all other edges are bad. Hence, by taking the dual of a good
graph (i.e., inverting all the input bits) we get a bad graph. Notice that not all
graphs are either good or bad, but the definition can be extended to include all
graphs. Haken shows that a monotone circuit that distinguishes good graphs
from bad must be large.

We use the following extended definition of the BMS problem.

Definition 8. Instances of BMS(m) are graphs with m2 − 2 vertices (m > 2).
A graph is in the language BMS(m) if there exists a partition of the vertices
into m − 1 sets of size m and one of size m − 2, so that each of these subsets
forms a clique.

Using this definition, it is easy to see that the BMS problem is monotone
and in NP.

Theorem 9 (Haken [7]). The monotone circuit complexity for BMS(m)
is 2Ω(

√
m).

Proof. We let the set of positive test graphs G for the BMS problem be all
graphs with m2− 2 vertices that contain m− 1 cliques of size m and one clique
of size m − 2, but no other edges. The set of negative test graphs B is all
graphs on m2 − 2 vertices that contain m − 1 independent sets of size m and
one independent set of size m − 2, but where all other edges are present. Our
positive and negative test graphs correspond to Haken’s good and bad graphs
respectively.

9

Clearly, all positive test graphs are in the BMS language. Negative test
graphs are not in the BMS language since they contain only m − 2 cliques of
size m.

Next we count the number of test graphs. Counting the number of positive
test graphs is the same as counting the number of ways that a set of m2 − 2
elements can be partitioned into m− 1 sets containing m elements and one set
containing m− 2 elements. We get

|G| = (m2 − 2)!

(m!)(m−1)(m− 2)!(m− 1)!
, (1)

and by duality |B| = |G|.
For each conjunction and disjunction, let a graph correspond to it in the

natural way: for every literal, include the corresponding edge in the graph.
Suppose we want to determine whether a positive test graph satisfies a con-

junction C. This is the case when the graph corresponding to C is a subgraph of
the positive test graph. Therefore, we only have to know how the vertices of the
graph corresponding to C are divided into connected components to determine
what positive test graphs are accepted by C.

In this section we do not limit the length of conjunctions and disjunctions
by their number of literals, but instead we define their size by m2 − 2 minus
the number of connected components in their corresponding graphs, and require
that their size is less than c and d respectively.

We choose c = d = b
√
mc (since c = d we only use c), i.e., the graphs

corresponding to the conjunctions and disjunctions in the approximators have
more than m2 − 2 − b

√
mc connected components. Note that, implicitly, the

number of literals in conjunctions and disjunctions is bounded by c2/2 ≤ m/2.

Lemma 10 (Specialization of Generic Lemma A). At the output gate eo, the
approximators either fail for all negative test graphs, or they fail for at least half
of the positive test graphs.

Proof. If the approximator fC
eo for the output gate fails for all the graphs in

B we are in the first case. Otherwise, let b ∈ B be a graph for which the
approximator does not fail at eo.

Since fC
eo(b) = 0, there is a disjunction D in fC

eo , and as noted above, this
disjunction contains less than c2/2 ≤ m/2 literals.

The fraction of graphs in G that contain a specific one of these literals is less
than 1/m, which can be seen as follows.

A graph in G has (m−1)
(
m
2

)
+
(
m−2

2

)
edges out of the possible

(
m2−2

2

)
ones.

Since all edges are equally likely, this means that a specific edge appears in a
fraction

(m− 1)
(
m
2

)
+
(
m−2

2

)(
m2−2

2

) <
1

m

of the graphs in G.
Thus, the fraction of G that contains at least one of the m/2 literals in D is

at most 1/2. So for at least half of all g ∈ G, we have D(g) = 0 and therefore
also fC

eo(g) = 0.

Next, we establish an upper bound for the number of test graphs for which
the approximators introduce an error at a single gate.

10

Lemma 11 (Specialization of Generic Lemma B). At an ∧ gate e, the approx-
imator fD

e introduces an error for at most

m4c(m2 − 2− 2c)!

2c(m!)(m−1)(m− 2)!(m− 1)!
(2)

positive test graphs.

Proof. We introduce errors on positive test graphs by removing conjunctions
whose corresponding graphs contain at most m2− 2− c connected components.
When counting the number of positive test graphs for which an error is intro-
duced, we consider different orderings of the vertices within the partitions and
the order of the partitions as different graphs, and in the end we divide by the
same denominator as in (1).

When building the tree, let w be the node that was created while expanding
the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case that Di+1 contains a literal xu,v for which both endpoints
are in the same connected component in the graph corresponding to C. Then,
we create only one single child under w and label the edge xu,v. In this case,
we know that xu,v is satisfied if C is, so dropping all other children does not
introduce errors for any positive test graphs. Clearly, ignoring to create some
children never introduces errors for negative test graphs.

Otherwise, w gets less than c2/2 children, since each disjunction contains less
than c2/2 literals. In this case the number of connected components decreases
by one for the children, so we will make c such expansions before we reach a node
where the graph for the corresponding conjunction containsm2−2−c connected
components. Therefore, there are at most (c2/2)c ≤ mc/2c such conjunctions.

We now count the number of inputs accepted by a single conjunction whose
corresponding graph H contains m2−2−c connected components. Let a denote
the number of vertices in H that are part of connected components with more
than one vertex. It follows that the number of isolated vertices inH ism2−2−a,
and that the number of connected components in H with more than one vertex
is a− c.

To get an upper bound for the number of positive test graphs that are
compatible with H we count as follows. Each connected component in H with
more than one vertex must go into one of the m partitions, which makes at most
ma−c choices. Then, each vertex in those connected components can be placed
in at most m ways each within the partition. Lastly, the remaining m2 − 2− a
vertices can be placed freely in (m2−2−a)! ways. To sum up, the total number
of choices is at most

ma−cma(m2 − 2− a)! = m2a−c(m2 − 2− a)!,

which is increasing with a. Since the graph H contains a − c connected com-
ponents with more than one vertex, the total number a of vertices in such
components is at most 2c. This follows since the number of connected com-
ponents with more than one vertex is at most c. So an upper bound for the
number of choices is

m3c(m2 − 2− 2c)!.

Multiplying the maximum number of conjunctions whose corresponding
graphs contain m2 − 2 − c connected components by the maximum number

11

of inputs accepted by each, and finally dividing with the same denominator as
in (1) yields the lemma.

The proof of the lemma above differs slightly from the corresponding proof by
Haken. The reason for this is that we make a construction of the approximator
for an ∧ gate from the approximators for the input gates, whereas Haken only
proves the existence of a set of short conjunctions that describe the gate well
enough.

Because of the duality of the test graphs and since c = d, the following
lemma can be proved analogously to the previous one.

Lemma 12 (Specialization of Generic Lemma C). At an ∨ gate e, the num-
ber negative test graphs for which the approximator fC

e introduces an error is
bounded by (2).

We now consider the two cases from Lemma 10. Either the approximators
for the output gate eo fail for at least half the positive test graphs, or they fail
for all negative test graphs. Since |G| = |B|, and since we have the bound (2)
for the maximum number of errors introduced in a single gate, the minimum
size of Ψ is

2c(m2 − 2)!

2m4c(m2 − 2− 2c)!
.

If we expand this expression we get

size(Ψ) ≥ 2c
(m2 − 2) · · · (m2 − 2− 2c+ 1)

2m4c

≥ 2c

2

(m2 − 2− 2c+ 1)2c

(m2)2c

=
2b
√
mc

2

(
m2 − 2b

√
mc − 1

m2

)2b
√
mc

∈ 2Ω(
√
m).

6 Clique
In this section we prove that deciding whether a graph on n vertices contains any
complete subgraph of size m (the problem CLIQUE(m,n)) requires monotone
circuits of exponential size.

Theorem 13 (Alon and Boppana [1]). The monotone circuit complexity for
CLIQUE(m,n) is 2Ω(

√
m) when m ≤ n2/3.

Proof. Let the positive test graphs be all possible graphs on n vertices with a
clique of size m and no other edges. This makes

(
n
m

)
positive test graphs. We

make one negative test graph for each possible coloring of the n vertices using
m− 1 colors by connecting vertices of different colors by edges. Note that some
colorings result in the same graph, but we treat them as different for counting
purposes and get (m− 1)n negative test graphs.

As in the proof of the BMS problem, we define the size of disjunctions by n
minus the number of connected components in their corresponding graphs, and
require that their size is less than d.

12

For the conjunctions, however, we introduce a new notation of size that
counts the number of vertices they touch. The number of vertices that a con-
junction touches is the number of different vertices to which any of the edges
connect. A conjunction is required to touch less than c vertices.

Choose c = b
√
mc, so that conjunctions touch less than b

√
mc vertices.

Implicitly, the number of literals in conjunctions is bounded by c2/2 ≤ m/2.
Let d = bn/(8m)c so that the graphs corresponding to disjunctions have

more than n − bn/(8m)c connected components; this implies that they touch
less than 2d ≤ n/(4m) vertices.

Lemma 14 (Specialization of Generic Lemma A). At the output gate eo, the
approximators either fail for all negative test graphs or they fail for at least half
of the positive test graphs.

Proof. Assume that there is a negative test graph b such that fC
eo(b) = 0 (oth-

erwise we are done already). Then there is a disjunction D in fC
eo , and we show

that this disjunction can be 1 for at most half of the positive test graphs.
A necessary condition for D to be 1 on a positive test graph g is that one

of the vertices it touches is in the clique of g. Since any given vertex is part of
the clique in a fraction m/n of the positive test graphs, a collection of at most
n/(8m) vertices has a vertex in common with less than half the positive test
graphs.

Lemma 15 (Specialization of Generic Lemma B). At an ∧ gate e, the approx-
imator fD

e introduces an error for at most(
n− c
m− c

)(n

2m

)c
positive test graphs.

Proof. When building the tree, let w be the node that was created while ex-
panding the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case that Di+1 contains a literal xu,v for which both endpoints
are already touched by C. Then a positive test graph that satisfies C also
satisfies Di+1, so we only create one single child under w containing xu,v.

Otherwise,Di+1 contains a mix of literals, for some none of the two endpoints
are touched by C, and for some one endpoint is touched by C.

First consider the literals that have one endpoint that is already touched
by C: they all have another endpoint that is not touched by C. For each such
endpoint, arbitrarily select one of the literals that connects to the endpoint,
and form one child for it. The reason that we may disregard some literals from
consideration is that two conjunctions that touch the same vertices will accept
the same positive test graphs. The total number of children created this way is
less than 2d since Di+1 touches at most 2d vertices.

For the literals that connect to two vertices that are not touched by C, we
first select one of their endpoints in some arbitrary way and create a child for it;
however, we do not label the edges to these children. At most 2d such children
are created. Then, we create less than 2d children under each of these children
for the other endpoint, and the edges down to these children are labeled by
literals.

13

The way we have constructed the tree implies that no node has more than
4d = n/(2m) children, and when descending to a child from a node with more
than one child, the number of vertices touched by the corresponding conjunction
increases by 1. Therefore, there are at most (n/(2m))c conjunctions touching c
vertices.

The number of positive test graphs accepted by a single conjunction touching
c vertices is the number of ways to choose the remaining m− c vertices for the
clique out of the total remaining n− c vertices, which is

(
n−c
m−c

)
.

Finally, the lemma follows from multiplying the bound for the number of
conjunctions touching c vertices by the maximum number of inputs they may
accept.

Lemma 16 (Specialization of Generic Lemma C). At an ∨ gate e, the approx-
imator fC

e introduces an error at most (m/2)d(m− 1)n−d negative test graphs.

Proof. We start by bounding the number of disjunctions corresponding to nodes
in the tree, whose corresponding graphs contain n− d connected components.

When building the tree, let w be the node that was created while expanding
the conjunction Ci, and let D be the disjunction corresponding to w.

Consider the case that Ci+1 contains a literal xu,v for which both endpoints
are in the same connected component in the graph corresponding to D. Then a
negative test graph that falsifies D also falsifies Ci+1, since u and v must have
the same color. It is therefore enough to create only one single child under w
and label the edge xu,v.

Otherwise, w gets at most m/2 children, since each conjunction contains at
most m/2 literals. In this case the number of connected components decreases
by one for the children, so we will make d such expansions before we reach a node
for which the graph for the corresponding disjunction contains n− d connected
components. In all, there can hence be at most (m/2)d such disjunctions.

It remains to count the number of negative test graphs rejected by a single
disjunction whose corresponding graph H contains n−d connected components.
The negative test graphs that are rejected by such a disjunction are those that
use only one color within each connected component, and their number is (m−
1)n−d.

Multiplying the number of disjunctions whose corresponding graphs contain
n− d connected components by the number of negative test graphs rejected by
each yields the bound in the lemma.

We now determine the lower bound for the circuit size. There are two cases
to consider: either fD

eo fails on at least half the positive test graphs so that

size(Ψ) ≥
(
n
m

)
2
(
n−c
m−c

) (
n

2m

)c
=

1

2

n! (m− c)!
(n− c)!m!

(2m)c

nc

≥ 1

2
2c

(n− c)c

mc

mc

nc

∈ 2Ω(
√
m),

14

or the approximators fail for all negative test graphs so that

size(Ψ) ≥ (m− 1)n

(m− 1)n−d(m/2)d

= 2d
(
m− 1

m

)d

∈ 2Ω(n/m).

Since 2Ω(
√
m) ⊆ 2Ω(n/m) for m ≤ n2/3, the theorem follows.

Acknowledgment
We thank Johan Håstad for helpful discussions and comments on earlier versions
of this paper.

References
[1] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of

boolean functions. Combinatorica, 7:1–22, 1987.

[2] Kazuyuki Amano and Akira Maruoka. Potential of the approximation
method. In Proc. 37th Ann. IEEE Symp. Found. Comput. Sci., pages
431–440, 1996.

[3] Alexander E. Andreev. On a method for obtaining lower bounds for the
complexity of individual monotone functions. Sov. Math. Dokl., 31:530–534,
1985.

[4] Christer Berg, Staffan Ulfberg, and Avi Wigderson. Symmetric approxima-
tion for monotone real circuits. manuscript, 1996.

[5] Ravi B. Boppana and Michael Sipser. The complexity of finite functions. In
Jan van Leeuwen, editor, Handbook of theoretical computer science, volume
A, Algorithms and complexity, pages 757–804. Elsevier/MIT Press, 1990.

[6] Paul Erdős and Richard Rado. Intersection theorems for systems of sets.
J. London Math. Soc., 35:85–90, 1960.

[7] Armin Haken. Counting bottlenecks to show monotone P 6= NP. In Proc.
36th Ann. IEEE Symp. Found. Comput. Sci., pages 36–40, 1995.

[8] Armin Haken and Stephen Cook. An exponential lower bound for the size
of monotone real circuits. Submitted to J. Comput. System Sci., 1996.

[9] Stasys Jukna. Finite limits and monotone computations over the reals. In
Twelfth Annual IEEE Conference on Computational Complexity, 1997.

[10] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and
monotone computations. J. Symbolic Logic, to appear, 1997.

[11] Alexander A. Razborov. Lower bounds on the monotone complexity of
some boolean functions. Sov. Math. Dokl., 31:354–357, 1985.

15

[12] Alexander A. Razborov. On the method of approximations. In Proc.
Twenty-first Ann. ACM Symp. Theor. Comput., pages 167–176, 1989.

[13] Janos Simon and Shi-Chun Tsai. A note on the bottleneck counting argu-
ment. In Twelfth Annual IEEE Conference on Computational Complexity,
1997.

[14] Jürgen Tiekenheinrich. A 4n lower bound on the monotone network com-
plexity of a one-output boolean function. Inform. Process. Lett., 18:201–
202, 1984.

16

